# coding: utf-8 from __future__ import unicode_literals import pytest from spacy.attrs import ORTH, LENGTH from spacy.tokens import Doc from spacy.vocab import Vocab from ..util import get_doc @pytest.fixture def doc(en_tokenizer): text = "This is a sentence. This is another sentence. And a third." heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3, 0, 1, -2, -1] deps = ['nsubj', 'ROOT', 'det', 'attr', 'punct', 'nsubj', 'ROOT', 'det', 'attr', 'punct', 'ROOT', 'det', 'npadvmod', 'punct'] tokens = en_tokenizer(text) return get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps) @pytest.fixture def doc_not_parsed(en_tokenizer): text = "This is a sentence. This is another sentence. And a third." tokens = en_tokenizer(text) doc = Doc(tokens.vocab, words=[t.text for t in tokens]) doc.is_parsed = False return doc def test_spans_sent_spans(doc): sents = list(doc.sents) assert sents[0].start == 0 assert sents[0].end == 5 assert len(sents) == 3 assert sum(len(sent) for sent in sents) == len(doc) def test_spans_root(doc): span = doc[2:4] assert len(span) == 2 assert span.text == 'a sentence' assert span.root.text == 'sentence' assert span.root.head.text == 'is' def test_spans_string_fn(doc): span = doc[0:4] assert len(span) == 4 assert span.text == 'This is a sentence' assert span.upper_ == 'THIS IS A SENTENCE' assert span.lower_ == 'this is a sentence' def test_spans_root2(en_tokenizer): text = "through North and South Carolina" heads = [0, 3, -1, -2, -4] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert doc[-2:].root.text == 'Carolina' def test_spans_span_sent(doc, doc_not_parsed): """Test span.sent property""" assert len(list(doc.sents)) assert doc[:2].sent.root.text == 'is' assert doc[:2].sent.text == 'This is a sentence .' assert doc[6:7].sent.root.left_edge.text == 'This' # test on manual sbd doc_not_parsed[0].is_sent_start = True doc_not_parsed[5].is_sent_start = True assert doc_not_parsed[1:3].sent == doc_not_parsed[0:5] assert doc_not_parsed[10:14].sent == doc_not_parsed[5:] def test_spans_lca_matrix(en_tokenizer): """Test span's lca matrix generation""" tokens = en_tokenizer('the lazy dog slept') doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=[2, 1, 1, 0]) lca = doc[:2].get_lca_matrix() assert(lca[0, 0] == 0) assert(lca[0, 1] == -1) assert(lca[1, 0] == -1) assert(lca[1, 1] == 1) def test_span_similarity_match(): doc = Doc(Vocab(), words=['a', 'b', 'a', 'b']) span1 = doc[:2] span2 = doc[2:] with pytest.warns(None): assert span1.similarity(span2) == 1.0 assert span1.similarity(doc) == 0.0 assert span1[:1].similarity(doc.vocab['a']) == 1.0 def test_spans_default_sentiment(en_tokenizer): """Test span.sentiment property's default averaging behaviour""" text = "good stuff bad stuff" tokens = en_tokenizer(text) tokens.vocab[tokens[0].text].sentiment = 3.0 tokens.vocab[tokens[2].text].sentiment = -2.0 doc = Doc(tokens.vocab, words=[t.text for t in tokens]) assert doc[:2].sentiment == 3.0 / 2 assert doc[-2:].sentiment == -2. / 2 assert doc[:-1].sentiment == (3.+-2) / 3. def test_spans_override_sentiment(en_tokenizer): """Test span.sentiment property's default averaging behaviour""" text = "good stuff bad stuff" tokens = en_tokenizer(text) tokens.vocab[tokens[0].text].sentiment = 3.0 tokens.vocab[tokens[2].text].sentiment = -2.0 doc = Doc(tokens.vocab, words=[t.text for t in tokens]) doc.user_span_hooks['sentiment'] = lambda span: 10.0 assert doc[:2].sentiment == 10.0 assert doc[-2:].sentiment == 10.0 assert doc[:-1].sentiment == 10.0 def test_spans_are_hashable(en_tokenizer): """Test spans can be hashed.""" text = "good stuff bad stuff" tokens = en_tokenizer(text) span1 = tokens[:2] span2 = tokens[2:4] assert hash(span1) != hash(span2) span3 = tokens[0:2] assert hash(span3) == hash(span1) def test_spans_by_character(doc): span1 = doc[1:-2] span2 = doc.char_span(span1.start_char, span1.end_char, label='GPE') assert span1.start_char == span2.start_char assert span1.end_char == span2.end_char assert span2.label_ == 'GPE' def test_span_to_array(doc): span = doc[1:-2] arr = span.to_array([ORTH, LENGTH]) assert arr.shape == (len(span), 2) assert arr[0, 0] == span[0].orth assert arr[0, 1] == len(span[0]) def test_span_as_doc(doc): span = doc[4:10] span_doc = span.as_doc() assert span.text == span_doc.text.strip() def test_span_ents_property(doc): """Test span.ents for the """ doc.ents = [ (doc.vocab.strings['PRODUCT'], 0, 1), (doc.vocab.strings['PRODUCT'], 7, 8), (doc.vocab.strings['PRODUCT'], 11, 14) ] assert len(list(doc.ents)) == 3 sentences = list(doc.sents) assert len(sentences) == 3 assert len(sentences[0].ents) == 1 # First sentence, also tests start of sentence assert sentences[0].ents[0].text == "This" assert sentences[0].ents[0].label_ == "PRODUCT" assert sentences[0].ents[0].start == 0 assert sentences[0].ents[0].end == 1 # Second sentence assert len(sentences[1].ents) == 1 assert sentences[1].ents[0].text == "another" assert sentences[1].ents[0].label_ == "PRODUCT" assert sentences[1].ents[0].start == 7 assert sentences[1].ents[0].end == 8 # Third sentence ents, Also tests end of sentence assert sentences[2].ents[0].text == "a third ." assert sentences[2].ents[0].label_ == "PRODUCT" assert sentences[2].ents[0].start == 11 assert sentences[2].ents[0].end == 14