"""This script is experimental. Try pre-training the CNN component of the text categorizer using a cheap language modelling-like objective. Specifically, we load pretrained vectors (from something like word2vec, GloVe, FastText etc), and use the CNN to predict the tokens' pretrained vectors. This isn't as easy as it sounds: we're not merely doing compression here, because heavy dropout is applied, including over the input words. This means the model must often (50% of the time) use the context in order to predict the word. To evaluate the technique, we're pre-training with the 50k texts from the IMDB corpus, and then training with only 100 labels. Note that it's a bit dirty to pre-train with the development data, but also not *so* terrible: we're not using the development labels, after all --- only the unlabelled text. """ import plac import tqdm import random import ml_datasets import spacy from spacy.util import minibatch, use_gpu, compounding from spacy.pipeline import TextCategorizer from spacy.ml.tok2vec import Tok2Vec import numpy def load_texts(limit=0): train, dev = ml_datasets.imdb() train_texts, train_labels = zip(*train) dev_texts, dev_labels = zip(*train) train_texts = list(train_texts) dev_texts = list(dev_texts) random.shuffle(train_texts) random.shuffle(dev_texts) if limit >= 1: return train_texts[:limit] else: return list(train_texts) + list(dev_texts) def load_textcat_data(limit=0): """Load data from the IMDB dataset.""" # Partition off part of the train data for evaluation train_data, eval_data = ml_datasets.imdb() random.shuffle(train_data) train_data = train_data[-limit:] texts, labels = zip(*train_data) eval_texts, eval_labels = zip(*eval_data) cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in labels] eval_cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in eval_labels] return (texts, cats), (eval_texts, eval_cats) def prefer_gpu(): used = spacy.util.use_gpu(0) if used is None: return False else: import cupy.random cupy.random.seed(0) return True def build_textcat_model(tok2vec, nr_class, width): from thinc.model import Model from thinc.layers import Softmax, chain, reduce_mean from thinc.layers import list2ragged with Model.define_operators({">>": chain}): model = ( tok2vec >> list2ragged() >> reduce_mean() >> Softmax(nr_class, width) ) model.tok2vec = tok2vec return model def block_gradients(model): from thinc.api import wrap # TODO FIX def forward(X, drop=0.0): Y, _ = model.begin_update(X, drop=drop) return Y, None return wrap(forward, model) def create_pipeline(width, embed_size, vectors_model): print("Load vectors") nlp = spacy.load(vectors_model) print("Start training") textcat = TextCategorizer( nlp.vocab, labels=["POSITIVE", "NEGATIVE"], model=build_textcat_model( Tok2Vec(width=width, embed_size=embed_size), 2, width ), ) nlp.add_pipe(textcat) return nlp def train_tensorizer(nlp, texts, dropout, n_iter): tensorizer = nlp.create_pipe("tensorizer") nlp.add_pipe(tensorizer) optimizer = nlp.begin_training() for i in range(n_iter): losses = {} for i, batch in enumerate(minibatch(tqdm.tqdm(texts))): docs = [nlp.make_doc(text) for text in batch] tensorizer.update((docs, None), losses=losses, sgd=optimizer, drop=dropout) print(losses) return optimizer def train_textcat(nlp, n_texts, n_iter=10): textcat = nlp.get_pipe("textcat") tok2vec_weights = textcat.model.tok2vec.to_bytes() (train_texts, train_cats), (dev_texts, dev_cats) = load_textcat_data(limit=n_texts) print( "Using {} examples ({} training, {} evaluation)".format( n_texts, len(train_texts), len(dev_texts) ) ) train_data = list(zip(train_texts, [{"cats": cats} for cats in train_cats])) # get names of other pipes to disable them during training other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "textcat"] with nlp.disable_pipes(*other_pipes): # only train textcat optimizer = nlp.begin_training() textcat.model.tok2vec.from_bytes(tok2vec_weights) print("Training the model...") print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F")) for i in range(n_iter): losses = {"textcat": 0.0} # batch up the examples using spaCy's minibatch batches = minibatch(tqdm.tqdm(train_data), size=2) for batch in batches: nlp.update(batch, sgd=optimizer, drop=0.2, losses=losses) with textcat.model.use_params(optimizer.averages): # evaluate on the dev data split off in load_data() scores = evaluate_textcat(nlp.tokenizer, textcat, dev_texts, dev_cats) print( "{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format( # print a simple table losses["textcat"], scores["textcat_p"], scores["textcat_r"], scores["textcat_f"], ) ) def evaluate_textcat(tokenizer, textcat, texts, cats): docs = (tokenizer(text) for text in texts) tp = 1e-8 fp = 1e-8 tn = 1e-8 fn = 1e-8 for i, doc in enumerate(textcat.pipe(docs)): gold = cats[i] for label, score in doc.cats.items(): if label not in gold: continue if score >= 0.5 and gold[label] >= 0.5: tp += 1.0 elif score >= 0.5 and gold[label] < 0.5: fp += 1.0 elif score < 0.5 and gold[label] < 0.5: tn += 1 elif score < 0.5 and gold[label] >= 0.5: fn += 1 precision = tp / (tp + fp) recall = tp / (tp + fn) f_score = 2 * (precision * recall) / (precision + recall) return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score} @plac.annotations( width=("Width of CNN layers", "positional", None, int), embed_size=("Embedding rows", "positional", None, int), pretrain_iters=("Number of iterations to pretrain", "option", "pn", int), train_iters=("Number of iterations to pretrain", "option", "tn", int), train_examples=("Number of labelled examples", "option", "eg", int), vectors_model=("Name or path to vectors model to learn from"), ) def main( width, embed_size, vectors_model, pretrain_iters=30, train_iters=30, train_examples=1000, ): random.seed(0) numpy.random.seed(0) use_gpu = prefer_gpu() print("Using GPU?", use_gpu) nlp = create_pipeline(width, embed_size, vectors_model) print("Load data") texts = load_texts(limit=0) print("Train tensorizer") optimizer = train_tensorizer(nlp, texts, dropout=0.2, n_iter=pretrain_iters) print("Train textcat") train_textcat(nlp, train_examples, n_iter=train_iters) if __name__ == "__main__": plac.call(main)