from pathlib import Path from typing import Dict from ._util import app, init_cli, Arg, Opt from ..vectors import Vectors from ..errors import Errors, Warnings from ..language import Language from ..util import ensure_path, get_lang_class, load_model, OOV_RANK try: import ftfy except ImportError: ftfy = None def must_initialize(init_path: Path, config_path: Path, overrides: Dict) -> bool: config = util.load_config(config_path, overrides=overrides) if not init_path.exists(): return True elif not (init_path / "config.cfg").exists(): return True else: init_cfg = util.load_config(init_path / "config.cfg", interpolate=True) if config.to_str() != init_cfg.to_str(): return True else: return False def init_pipeline(config: Config, use_gpu: int=-1): raw_config = config config = raw_config.interpolate() if config["training"]["seed"] is not None: fix_random_seed(config["training"]["seed"]) allocator = config["training"]["gpu_allocator"] if use_gpu >= 0 and allocator: set_gpu_allocator(allocator) # Use original config here before it's resolved to functions sourced_components = get_sourced_components(config) with show_validation_error(config_path): nlp = util.load_model_from_config(raw_config) # Resolve all training-relevant sections using the filled nlp config T = registry.resolve( config["training"], schema=TrainingSchema, validate=validate, ) # TODO: It might not be 'corpora' corpora = registry.resolve(config["corpora"], validate=True) raw_text, tag_map, morph_rules, weights_data = load_from_paths(config) util.load_vocab_data_into_model(nlp, lookups=T["lookups"]) if T["vectors"] is not None: add_vectors(nlp, T["vectors"]) score_weights = T["score_weights"] optimizer = T["optimizer"] train_corpus = dot_to_object({"corpora": corpora}, T["train_corpus"]) dev_corpus = dot_to_object({"corpora": corpora}, T["dev_corpus"]) batcher = T["batcher"] train_logger = T["logger"] before_to_disk = create_before_to_disk_callback(T["before_to_disk"]) # Components that shouldn't be updated during training frozen_components = T["frozen_components"] # Sourced components that require resume_training resume_components = [p for p in sourced_components if p not in frozen_components] msg.info(f"Pipeline: {nlp.pipe_names}") if resume_components: with nlp.select_pipes(enable=resume_components): msg.info(f"Resuming training for: {resume_components}") nlp.resume_training(sgd=optimizer) with nlp.select_pipes(disable=[*frozen_components, *resume_components]): nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer) # Verify the config after calling 'begin_training' to ensure labels # are properly initialized verify_config(nlp) if tag_map: # Replace tag map with provided mapping nlp.vocab.morphology.load_tag_map(tag_map) if morph_rules: # Load morph rules nlp.vocab.morphology.load_morph_exceptions(morph_rules) # Load pretrained tok2vec weights - cf. CLI command 'pretrain' if weights_data is not None: tok2vec_component = C["pretraining"]["component"] if tok2vec_component is None: msg.fail( f"To use pretrained tok2vec weights, [pretraining.component] " f"needs to specify the component that should load them.", exits=1, ) layer = nlp.get_pipe(tok2vec_component).model tok2vec_layer = C["pretraining"]["layer"] if tok2vec_layer: layer = layer.get_ref(tok2vec_layer) layer.from_bytes(weights_data) msg.info(f"Loaded pretrained weights into component '{tok2vec_component}'") return nlp def init_vocab( lang: str, output_dir: Path, freqs_loc: Optional[Path] = None, clusters_loc: Optional[Path] = None, jsonl_loc: Optional[Path] = None, vectors_loc: Optional[Path] = None, prune_vectors: int = -1, truncate_vectors: int = 0, vectors_name: Optional[str] = None, model_name: Optional[str] = None, base_model: Optional[str] = None, silent: bool = True, ) -> Language: msg = Printer(no_print=silent, pretty=not silent) if jsonl_loc is not None: if freqs_loc is not None or clusters_loc is not None: settings = ["-j"] if freqs_loc: settings.append("-f") if clusters_loc: settings.append("-c") msg.warn( "Incompatible arguments", "The -f and -c arguments are deprecated, and not compatible " "with the -j argument, which should specify the same " "information. Either merge the frequencies and clusters data " "into the JSONL-formatted file (recommended), or use only the " "-f and -c files, without the other lexical attributes.", ) jsonl_loc = ensure_path(jsonl_loc) lex_attrs = srsly.read_jsonl(jsonl_loc) else: clusters_loc = ensure_path(clusters_loc) freqs_loc = ensure_path(freqs_loc) if freqs_loc is not None and not freqs_loc.exists(): msg.fail("Can't find words frequencies file", freqs_loc, exits=1) lex_attrs = read_attrs_from_deprecated(msg, freqs_loc, clusters_loc) with msg.loading("Creating blank pipeline..."): nlp = create_model(lang, lex_attrs, name=model_name, base_model=base_model) msg.good("Successfully created blank pipeline") if vectors_loc is not None: add_vectors( msg, nlp, vectors_loc, truncate_vectors, prune_vectors, vectors_name ) vec_added = len(nlp.vocab.vectors) lex_added = len(nlp.vocab) msg.good( "Sucessfully compiled vocab", f"{lex_added} entries, {vec_added} vectors", ) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) return nlp def open_file(loc: Union[str, Path]) -> IO: """Handle .gz, .tar.gz or unzipped files""" loc = ensure_path(loc) if tarfile.is_tarfile(str(loc)): return tarfile.open(str(loc), "r:gz") elif loc.parts[-1].endswith("gz"): return (line.decode("utf8") for line in gzip.open(str(loc), "r")) elif loc.parts[-1].endswith("zip"): zip_file = zipfile.ZipFile(str(loc)) names = zip_file.namelist() file_ = zip_file.open(names[0]) return (line.decode("utf8") for line in file_) else: return loc.open("r", encoding="utf8") def read_attrs_from_deprecated( msg: Printer, freqs_loc: Optional[Path], clusters_loc: Optional[Path] ) -> List[Dict[str, Any]]: if freqs_loc is not None: with msg.loading("Counting frequencies..."): probs, _ = read_freqs(freqs_loc) msg.good("Counted frequencies") else: probs, _ = ({}, DEFAULT_OOV_PROB) # noqa: F841 if clusters_loc: with msg.loading("Reading clusters..."): clusters = read_clusters(clusters_loc) msg.good("Read clusters") else: clusters = {} lex_attrs = [] sorted_probs = sorted(probs.items(), key=lambda item: item[1], reverse=True) if len(sorted_probs): for i, (word, prob) in tqdm(enumerate(sorted_probs)): attrs = {"orth": word, "id": i, "prob": prob} # Decode as a little-endian string, so that we can do & 15 to get # the first 4 bits. See _parse_features.pyx if word in clusters: attrs["cluster"] = int(clusters[word][::-1], 2) else: attrs["cluster"] = 0 lex_attrs.append(attrs) return lex_attrs def create_model( lang: str, lex_attrs: List[Dict[str, Any]], name: Optional[str] = None, base_model: Optional[Union[str, Path]] = None, ) -> Language: if base_model: nlp = load_model(base_model) # keep the tokenizer but remove any existing pipeline components due to # potentially conflicting vectors for pipe in nlp.pipe_names: nlp.remove_pipe(pipe) else: lang_class = get_lang_class(lang) nlp = lang_class() for lexeme in nlp.vocab: lexeme.rank = OOV_RANK for attrs in lex_attrs: if "settings" in attrs: continue lexeme = nlp.vocab[attrs["orth"]] lexeme.set_attrs(**attrs) if len(nlp.vocab): oov_prob = min(lex.prob for lex in nlp.vocab) - 1 else: oov_prob = DEFAULT_OOV_PROB nlp.vocab.cfg.update({"oov_prob": oov_prob}) if name: nlp.meta["name"] = name return nlp def add_vectors( msg: Printer, nlp: Language, vectors_loc: Optional[Path], truncate_vectors: int, prune_vectors: int, name: Optional[str] = None, ) -> None: vectors_loc = ensure_path(vectors_loc) if vectors_loc and vectors_loc.parts[-1].endswith(".npz"): nlp.vocab.vectors = Vectors(data=numpy.load(vectors_loc.open("rb"))) for lex in nlp.vocab: if lex.rank and lex.rank != OOV_RANK: nlp.vocab.vectors.add(lex.orth, row=lex.rank) else: if vectors_loc: with msg.loading(f"Reading vectors from {vectors_loc}"): vectors_data, vector_keys = read_vectors( msg, vectors_loc, truncate_vectors ) msg.good(f"Loaded vectors from {vectors_loc}") else: vectors_data, vector_keys = (None, None) if vector_keys is not None: for word in vector_keys: if word not in nlp.vocab: nlp.vocab[word] if vectors_data is not None: nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys) if name is None: # TODO: Is this correct? Does this matter? nlp.vocab.vectors.name = f"{nlp.meta['lang']}_{nlp.meta['name']}.vectors" else: nlp.vocab.vectors.name = name nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name if prune_vectors >= 1: nlp.vocab.prune_vectors(prune_vectors) def read_vectors(msg: Printer, vectors_loc: Path, truncate_vectors: int): f = open_file(vectors_loc) f = ensure_shape(f) shape = tuple(int(size) for size in next(f).split()) if truncate_vectors >= 1: shape = (truncate_vectors, shape[1]) vectors_data = numpy.zeros(shape=shape, dtype="f") vectors_keys = [] for i, line in enumerate(tqdm(f)): line = line.rstrip() pieces = line.rsplit(" ", vectors_data.shape[1]) word = pieces.pop(0) if len(pieces) != vectors_data.shape[1]: msg.fail(Errors.E094.format(line_num=i, loc=vectors_loc), exits=1) vectors_data[i] = numpy.asarray(pieces, dtype="f") vectors_keys.append(word) if i == truncate_vectors - 1: break return vectors_data, vectors_keys def ensure_shape(lines): """Ensure that the first line of the data is the vectors shape. If it's not, we read in the data and output the shape as the first result, so that the reader doesn't have to deal with the problem. """ first_line = next(lines) try: shape = tuple(int(size) for size in first_line.split()) except ValueError: shape = None if shape is not None: # All good, give the data yield first_line yield from lines else: # Figure out the shape, make it the first value, and then give the # rest of the data. width = len(first_line.split()) - 1 captured = [first_line] + list(lines) length = len(captured) yield f"{length} {width}" yield from captured def read_freqs( freqs_loc: Path, max_length: int = 100, min_doc_freq: int = 5, min_freq: int = 50 ): counts = PreshCounter() total = 0 with freqs_loc.open() as f: for i, line in enumerate(f): freq, doc_freq, key = line.rstrip().split("\t", 2) freq = int(freq) counts.inc(i + 1, freq) total += freq counts.smooth() log_total = math.log(total) probs = {} with freqs_loc.open() as f: for line in tqdm(f): freq, doc_freq, key = line.rstrip().split("\t", 2) doc_freq = int(doc_freq) freq = int(freq) if doc_freq >= min_doc_freq and freq >= min_freq and len(key) < max_length: try: word = literal_eval(key) except SyntaxError: # Take odd strings literally. word = literal_eval(f"'{key}'") smooth_count = counts.smoother(int(freq)) probs[word] = math.log(smooth_count) - log_total oov_prob = math.log(counts.smoother(0)) - log_total return probs, oov_prob def read_clusters(clusters_loc: Path) -> dict: clusters = {} if ftfy is None: warnings.warn(Warnings.W004) with clusters_loc.open() as f: for line in tqdm(f): try: cluster, word, freq = line.split() if ftfy is not None: word = ftfy.fix_text(word) except ValueError: continue # If the clusterer has only seen the word a few times, its # cluster is unreliable. if int(freq) >= 3: clusters[word] = cluster else: clusters[word] = "0" # Expand clusters with re-casing for word, cluster in list(clusters.items()): if word.lower() not in clusters: clusters[word.lower()] = cluster if word.title() not in clusters: clusters[word.title()] = cluster if word.upper() not in clusters: clusters[word.upper()] = cluster return clusters