from typing import List import numpy import pytest from numpy.testing import assert_almost_equal from thinc.api import Model, data_validation, get_current_ops from thinc.types import Array2d, Ragged from spacy.lang.en import English from spacy.ml import FeatureExtractor, StaticVectors from spacy.ml.character_embed import CharacterEmbed from spacy.tokens import Doc from spacy.vocab import Vocab OPS = get_current_ops() texts = ["These are 4 words", "Here just three"] l0 = [[1, 2], [3, 4], [5, 6], [7, 8]] l1 = [[9, 8], [7, 6], [5, 4]] list_floats = [OPS.xp.asarray(l0, dtype="f"), OPS.xp.asarray(l1, dtype="f")] list_ints = [OPS.xp.asarray(l0, dtype="i"), OPS.xp.asarray(l1, dtype="i")] array = OPS.xp.asarray(l1, dtype="f") ragged = Ragged(array, OPS.xp.asarray([2, 1], dtype="i")) def get_docs(): vocab = Vocab() for t in texts: for word in t.split(): hash_id = vocab.strings.add(word) vector = numpy.random.uniform(-1, 1, (7,)) vocab.set_vector(hash_id, vector) docs = [English(vocab)(t) for t in texts] return docs # Test components with a model of type Model[List[Doc], List[Floats2d]] @pytest.mark.parametrize("name", ["tagger", "tok2vec", "morphologizer", "senter"]) def test_components_batching_list(name): nlp = English() proc = nlp.create_pipe(name) util_batch_unbatch_docs_list(proc.model, get_docs(), list_floats) # Test components with a model of type Model[List[Doc], Floats2d] @pytest.mark.parametrize("name", ["textcat"]) def test_components_batching_array(name): nlp = English() proc = nlp.create_pipe(name) util_batch_unbatch_docs_array(proc.model, get_docs(), array) LAYERS = [ (CharacterEmbed(nM=5, nC=3), get_docs(), list_floats), (FeatureExtractor([100, 200]), get_docs(), list_ints), (StaticVectors(), get_docs(), ragged), ] @pytest.mark.parametrize("model,in_data,out_data", LAYERS) def test_layers_batching_all(model, in_data, out_data): # In = List[Doc] if isinstance(in_data, list) and isinstance(in_data[0], Doc): if isinstance(out_data, OPS.xp.ndarray) and out_data.ndim == 2: util_batch_unbatch_docs_array(model, in_data, out_data) elif ( isinstance(out_data, list) and isinstance(out_data[0], OPS.xp.ndarray) and out_data[0].ndim == 2 ): util_batch_unbatch_docs_list(model, in_data, out_data) elif isinstance(out_data, Ragged): util_batch_unbatch_docs_ragged(model, in_data, out_data) def util_batch_unbatch_docs_list( model: Model[List[Doc], List[Array2d]], in_data: List[Doc], out_data: List[Array2d] ): with data_validation(True): model.initialize(in_data, out_data) Y_batched = model.predict(in_data) Y_not_batched = [model.predict([u])[0] for u in in_data] for i in range(len(Y_batched)): assert_almost_equal( OPS.to_numpy(Y_batched[i]), OPS.to_numpy(Y_not_batched[i]), decimal=4 ) def util_batch_unbatch_docs_array( model: Model[List[Doc], Array2d], in_data: List[Doc], out_data: Array2d ): with data_validation(True): model.initialize(in_data, out_data) Y_batched = model.predict(in_data).tolist() Y_not_batched = [model.predict([u])[0].tolist() for u in in_data] assert_almost_equal(Y_batched, Y_not_batched, decimal=4) def util_batch_unbatch_docs_ragged( model: Model[List[Doc], Ragged], in_data: List[Doc], out_data: Ragged ): with data_validation(True): model.initialize(in_data, out_data) Y_batched = model.predict(in_data).data.tolist() Y_not_batched = [] for u in in_data: Y_not_batched.extend(model.predict([u]).data.tolist()) assert_almost_equal(Y_batched, Y_not_batched, decimal=4)