from __future__ import unicode_literals, print_function import json import pathlib import random import spacy from spacy.pipeline import DependencyParser from spacy.gold import GoldParse from spacy.tokens import Doc def train_parser(nlp, train_data, left_labels, right_labels): parser = DependencyParser.blank( nlp.vocab, left_labels=left_labels, right_labels=right_labels, features=nlp.defaults.parser_features) for itn in range(1000): random.shuffle(train_data) loss = 0 for words, heads, deps in train_data: doc = nlp.make_doc(words) gold = GoldParse(doc, heads=heads, deps=deps) loss += parser.update(doc, gold) parser.model.end_training() return parser def main(model_dir=None): if model_dir is not None: model_dir = pathlb.Path(model_dir) if not model_dir.exists(): model_dir.mkdir() assert model_dir.isdir() nlp = spacy.load('en', tagger=False, parser=False, entity=False, vectors=False) nlp.make_doc = lambda words: Doc(nlp.vocab, zip(words, [True]*len(words))) train_data = [ ( ['They', 'trade', 'mortgage', '-', 'backed', 'securities', '.'], [1, 1, 4, 4, 5, 1, 1], ['nsubj', 'ROOT', 'compound', 'punct', 'nmod', 'dobj', 'punct'] ), ( ['I', 'like', 'London', 'and', 'Berlin', '.'], [1, 1, 1, 2, 2, 1], ['nsubj', 'ROOT', 'dobj', 'cc', 'conj', 'punct'] ) ] left_labels = set() right_labels = set() for _, heads, deps in train_data: for i, (head, dep) in enumerate(zip(heads, deps)): if i < head: left_labels.add(dep) elif i > head: right_labels.add(dep) parser = train_parser(nlp, train_data, sorted(left_labels), sorted(right_labels)) doc = nlp.make_doc(['I', 'like', 'securities', '.']) parser(doc) for word in doc: print(word.text, word.dep_, word.head.text) if model_dir is not None: with (model_dir / 'config.json').open('wb') as file_: json.dump(parser.cfg, file_) parser.model.dump(str(model_dir / 'model')) if __name__ == '__main__': main() # I nsubj like # like ROOT like # securities dobj like # . cc securities