# cython: cdivision=True, infer_types=True
from cymem.cymem cimport Address, Pool
from libc.stdint cimport int32_t
from libcpp.vector cimport vector

from collections import Counter, defaultdict

from ...strings cimport hash_string
from ...structs cimport TokenC
from ...tokens.doc cimport Doc, set_children_from_heads
from ...tokens.token cimport MISSING_DEP
from ...typedefs cimport attr_t

from ...training import split_bilu_label

from ...training.example cimport Example
from ._state cimport ArcC, StateC
from .stateclass cimport StateClass

from ...errors import Errors

from thinc.extra.search cimport Beam


cdef weight_t MIN_SCORE = -90000
cdef attr_t SUBTOK_LABEL = hash_string('subtok')

DEF NON_MONOTONIC = True

cdef enum:
    SHIFT
    REDUCE
    LEFT
    RIGHT

    BREAK

    N_MOVES


MOVE_NAMES = [None] * N_MOVES
MOVE_NAMES[SHIFT] = 'S'
MOVE_NAMES[REDUCE] = 'D'
MOVE_NAMES[LEFT] = 'L'
MOVE_NAMES[RIGHT] = 'R'
MOVE_NAMES[BREAK] = 'B'


cdef enum:
    HEAD_IN_STACK = 0
    HEAD_IN_BUFFER
    HEAD_UNKNOWN
    IS_SENT_START
    SENT_START_UNKNOWN


cdef struct GoldParseStateC:
    char* state_bits
    int32_t* n_kids_in_buffer
    int32_t* n_kids_in_stack
    int32_t* heads
    attr_t* labels
    int32_t** kids
    int32_t* n_kids
    int32_t length
    int32_t stride
    weight_t push_cost
    weight_t pop_cost


cdef GoldParseStateC create_gold_state(
    Pool mem, const StateC* state, heads, labels, sent_starts
) except *:
    cdef GoldParseStateC gs
    gs.length = len(heads)
    gs.stride = 1
    assert gs.length > 0
    gs.labels = <attr_t*>mem.alloc(gs.length, sizeof(gs.labels[0]))
    gs.heads = <int32_t*>mem.alloc(gs.length, sizeof(gs.heads[0]))
    gs.n_kids = <int32_t*>mem.alloc(gs.length, sizeof(gs.n_kids[0]))
    gs.state_bits = <char*>mem.alloc(gs.length, sizeof(gs.state_bits[0]))
    gs.n_kids_in_buffer = <int32_t*>mem.alloc(gs.length, sizeof(gs.n_kids_in_buffer[0]))
    gs.n_kids_in_stack = <int32_t*>mem.alloc(gs.length, sizeof(gs.n_kids_in_stack[0]))

    for i, is_sent_start in enumerate(sent_starts):
        if is_sent_start is True:
            gs.state_bits[i] = set_state_flag(
                gs.state_bits[i],
                IS_SENT_START,
                1
            )
            gs.state_bits[i] = set_state_flag(
                gs.state_bits[i],
                SENT_START_UNKNOWN,
                0
            )

        elif is_sent_start is None:
            gs.state_bits[i] = set_state_flag(
                gs.state_bits[i],
                SENT_START_UNKNOWN,
                1
            )
            gs.state_bits[i] = set_state_flag(
                gs.state_bits[i],
                IS_SENT_START,
                0
            )
        else:
            gs.state_bits[i] = set_state_flag(
                gs.state_bits[i],
                SENT_START_UNKNOWN,
                0
            )
            gs.state_bits[i] = set_state_flag(
                gs.state_bits[i],
                IS_SENT_START,
                0
            )

    for i, (head, label) in enumerate(zip(heads, labels)):
        if head is not None:
            gs.heads[i] = head
            gs.labels[i] = label
            if i != head:
                gs.n_kids[head] += 1
            gs.state_bits[i] = set_state_flag(
                gs.state_bits[i],
                HEAD_UNKNOWN,
                0
            )
        else:
            gs.state_bits[i] = set_state_flag(
                gs.state_bits[i],
                HEAD_UNKNOWN,
                1
            )
    # Make an array of pointers, pointing into the gs_kids_flat array.
    assert gs.length > 0
    gs.kids = <int32_t**>mem.alloc(gs.length, sizeof(int32_t*))
    for i in range(gs.length):
        if gs.n_kids[i] != 0:
            gs.kids[i] = <int32_t*>mem.alloc(gs.n_kids[i], sizeof(int32_t))
    # This is a temporary buffer
    js_addr = Address(gs.length, sizeof(int32_t))
    js = <int32_t*>js_addr.ptr
    for i in range(gs.length):
        if not is_head_unknown(&gs, i):
            head = gs.heads[i]
            if head != i:
                gs.kids[head][js[head]] = i
                js[head] += 1
    gs.push_cost = push_cost(state, &gs)
    gs.pop_cost = pop_cost(state, &gs)
    return gs


cdef void update_gold_state(GoldParseStateC* gs, const StateC* s) nogil:
    for i in range(gs.length):
        gs.state_bits[i] = set_state_flag(
            gs.state_bits[i],
            HEAD_IN_BUFFER,
            0
        )
        gs.state_bits[i] = set_state_flag(
            gs.state_bits[i],
            HEAD_IN_STACK,
            0
        )
        gs.n_kids_in_stack[i] = 0
        gs.n_kids_in_buffer[i] = 0

    for i in range(s.stack_depth()):
        s_i = s.S(i)
        if not is_head_unknown(gs, s_i) and gs.heads[s_i] != s_i:
            gs.n_kids_in_stack[gs.heads[s_i]] += 1
        for kid in gs.kids[s_i][:gs.n_kids[s_i]]:
            gs.state_bits[kid] = set_state_flag(
                gs.state_bits[kid],
                HEAD_IN_STACK,
                1
            )
    for i in range(s.buffer_length()):
        b_i = s.B(i)
        if s.is_sent_start(b_i):
            break
        if not is_head_unknown(gs, b_i) and gs.heads[b_i] != b_i:
            gs.n_kids_in_buffer[gs.heads[b_i]] += 1
        for kid in gs.kids[b_i][:gs.n_kids[b_i]]:
            gs.state_bits[kid] = set_state_flag(
                gs.state_bits[kid],
                HEAD_IN_BUFFER,
                1
            )
    gs.push_cost = push_cost(s, gs)
    gs.pop_cost = pop_cost(s, gs)


cdef class ArcEagerGold:
    cdef GoldParseStateC c
    cdef Pool mem

    def __init__(self, ArcEager moves, StateClass stcls, Example example):
        self.mem = Pool()
        heads, labels = example.get_aligned_parse(projectivize=True)
        labels = [example.x.vocab.strings.add(label) if label is not None else MISSING_DEP for label in labels]
        sent_starts = _get_aligned_sent_starts(example)
        assert len(heads) == len(labels) == len(sent_starts), (len(heads), len(labels), len(sent_starts))
        self.c = create_gold_state(self.mem, stcls.c, heads, labels, sent_starts)

    def update(self, StateClass stcls):
        update_gold_state(&self.c, stcls.c)


def _get_aligned_sent_starts(example):
    """Get list of SENT_START attributes aligned to the predicted tokenization.
    If the reference has not sentence starts, return a list of None values.

    This function is slightly different from the one on Example, because we also
    check whether the reference sentences align across multiple sentences,
    and return missing values if they do. This prevents a problem where you have
    the start of a sentence merged onto a token that belongs to two sentences.
    """
    if example.y.has_annotation("SENT_START"):
        align = example.alignment.y2x
        sent_starts = [False] * len(example.x)
        seen_words = set()
        for y_sent in example.y.sents:
            x_indices = list(align[y_sent.start : y_sent.end])
            if any(x_idx in seen_words for x_idx in x_indices):
                # If there are any tokens in X that align across two sentences,
                # regard the sentence annotations as missing, as we can't
                # reliably use them.
                return [None] * len(example.x)
            seen_words.update(x_indices)
            sent_starts[x_indices[0]] = True
        return sent_starts
    else:
        return [None] * len(example.x)


cdef int check_state_gold(char state_bits, char flag) nogil:
    cdef char one = 1
    return 1 if (state_bits & (one << flag)) else 0


cdef int set_state_flag(char state_bits, char flag, int value) nogil:
    cdef char one = 1
    if value:
        return state_bits | (one << flag)
    else:
        return state_bits & ~(one << flag)


cdef int is_head_in_stack(const GoldParseStateC* gold, int i) nogil:
    return check_state_gold(gold.state_bits[i], HEAD_IN_STACK)


cdef int is_head_in_buffer(const GoldParseStateC* gold, int i) nogil:
    return check_state_gold(gold.state_bits[i], HEAD_IN_BUFFER)


cdef int is_head_unknown(const GoldParseStateC* gold, int i) nogil:
    return check_state_gold(gold.state_bits[i], HEAD_UNKNOWN)

cdef int is_sent_start(const GoldParseStateC* gold, int i) nogil:
    return check_state_gold(gold.state_bits[i], IS_SENT_START)

cdef int is_sent_start_unknown(const GoldParseStateC* gold, int i) nogil:
    return check_state_gold(gold.state_bits[i], SENT_START_UNKNOWN)


# Helper functions for the arc-eager oracle

cdef weight_t push_cost(const StateC* state, const GoldParseStateC* gold) nogil:
    cdef weight_t cost = 0
    b0 = state.B(0)
    if b0 < 0:
        return 9000
    if is_head_in_stack(gold, b0):
        cost += 1
    cost += gold.n_kids_in_stack[b0]
    if Break.is_valid(state, 0) and is_sent_start(gold, state.B(1)):
        cost += 1
    return cost


cdef weight_t pop_cost(const StateC* state, const GoldParseStateC* gold) nogil:
    cdef weight_t cost = 0
    s0 = state.S(0)
    if s0 < 0:
        return 9000
    if is_head_in_buffer(gold, s0):
        cost += 1
    cost += gold.n_kids_in_buffer[s0]
    return cost


cdef bint arc_is_gold(const GoldParseStateC* gold, int head, int child) nogil:
    if is_head_unknown(gold, child):
        return True
    elif gold.heads[child] == head:
        return True
    else:
        return False


cdef bint label_is_gold(const GoldParseStateC* gold, int child, attr_t label) nogil:
    if is_head_unknown(gold, child):
        return True
    elif label == 0:
        return True
    elif gold.labels[child] == label:
        return True
    else:
        return False


cdef bint _is_gold_root(const GoldParseStateC* gold, int word) nogil:
    return gold.heads[word] == word or is_head_unknown(gold, word)


cdef class Shift:
    """Move the first word of the buffer onto the stack and mark it as "shifted"

    Validity:
    * If stack is empty
    * At least two words in sentence
    * Word has not been shifted before

    Cost: push_cost 

    Action:
    * Mark B[0] as 'shifted'
    * Push stack
    * Advance buffer
    """
    @staticmethod
    cdef bint is_valid(const StateC* st, attr_t label) nogil:
        if st.stack_depth() == 0:
            return 1
        elif st.buffer_length() < 2:
            return 0
        elif st.is_sent_start(st.B(0)):
            return 0
        elif st.is_unshiftable(st.B(0)):
            return 0
        else:
            return 1

    @staticmethod
    cdef int transition(StateC* st, attr_t label) nogil:
        st.push()

    @staticmethod
    cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
        gold = <const GoldParseStateC*>_gold
        return gold.push_cost


cdef class Reduce:
    """
    Pop from the stack. If it has no head and the stack isn't empty, place
    it back on the buffer.

    Validity:
    * Stack not empty
    * Buffer nt empty
    * Stack depth 1 and cannot sent start l_edge(st.B(0))

    Cost:
    * If B[0] is the start of a sentence, cost is 0
    * Arcs between stack and buffer
    * If arc has no head, we're saving arcs between S[0] and S[1:], so decrement
        cost by those arcs.
    """
    @staticmethod
    cdef bint is_valid(const StateC* st, attr_t label) nogil:
        if st.stack_depth() == 0:
            return False
        elif st.buffer_length() == 0:
            return True
        elif st.stack_depth() == 1 and st.cannot_sent_start(st.l_edge(st.B(0))):
            return False
        else:
            return True

    @staticmethod
    cdef int transition(StateC* st, attr_t label) nogil:
        if st.has_head(st.S(0)) or st.stack_depth() == 1:
            st.pop()
        else:
            st.unshift()

    @staticmethod
    cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
        gold = <const GoldParseStateC*>_gold
        if state.is_sent_start(state.B(0)):
            return 0
        s0 = state.S(0)
        cost = gold.pop_cost
        if not state.has_head(s0):
            # Decrement cost for the arcs we save, as we'll be putting this
            # back to the buffer
            if is_head_in_stack(gold, s0):
                cost -= 1
            cost -= gold.n_kids_in_stack[s0]
        return cost


cdef class LeftArc:
    """Add an arc between B[0] and S[0], replacing the previous head of S[0] if
    one is set. Pop S[0] from the stack.

    Validity:
    * len(S) >= 1
    * len(B) >= 1
    * not is_sent_start(B[0])

    Cost:
        pop_cost - Arc(B[0], S[0], label) + (Arc(S[1], S[0]) if H(S[0]) else Arcs(S, S[0]))
    """
    @staticmethod
    cdef bint is_valid(const StateC* st, attr_t label) nogil:
        if st.stack_depth() == 0:
            return 0
        elif st.buffer_length() == 0:
            return 0
        elif st.is_sent_start(st.B(0)):
            return 0
        elif label == SUBTOK_LABEL and st.S(0) != (st.B(0)-1):
            return 0
        else:
            return 1

    @staticmethod
    cdef int transition(StateC* st, attr_t label) nogil:
        st.add_arc(st.B(0), st.S(0), label)
        # If we change the stack, it's okay to remove the shifted mark, as
        # we can't get in an infinite loop this way.
        st.set_reshiftable(st.B(0))
        st.pop()

    @staticmethod
    cdef inline weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
        gold = <const GoldParseStateC*>_gold
        cdef weight_t cost = gold.pop_cost
        s0 = state.S(0)
        s1 = state.S(1)
        b0 = state.B(0)
        if state.has_head(s0):
            # Increment cost if we're clobbering a correct arc
            cost += gold.heads[s0] == s1
        else:
            # If there's no head, we're losing arcs between S0 and S[1:].
            cost += is_head_in_stack(gold, s0)
            cost += gold.n_kids_in_stack[s0]
        if b0 != -1 and s0 != -1 and gold.heads[s0] == b0:
            cost -= 1
            cost += not label_is_gold(gold, s0, label)
        return cost


cdef class RightArc:
    """
    Add an arc from S[0] to B[0]. Push B[0].

    Validity:
    * len(S) >= 1
    * len(B) >= 1
    * not is_sent_start(B[0])

    Cost:
        push_cost + (not shifted[b0] and Arc(B[1:], B[0])) - Arc(S[0], B[0], label)
    """
    @staticmethod
    cdef bint is_valid(const StateC* st, attr_t label) nogil:
        if st.stack_depth() == 0:
            return 0
        elif st.buffer_length() == 0:
            return 0
        elif st.is_sent_start(st.B(0)):
            return 0
        elif label == SUBTOK_LABEL and st.S(0) != (st.B(0)-1):
            # If there's (perhaps partial) parse pre-set, don't allow cycle.
            return 0
        else:
            return 1

    @staticmethod
    cdef int transition(StateC* st, attr_t label) nogil:
        st.add_arc(st.S(0), st.B(0), label)
        st.push()

    @staticmethod
    cdef inline weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
        gold = <const GoldParseStateC*>_gold
        cost = gold.push_cost
        s0 = state.S(0)
        b0 = state.B(0)
        if s0 != -1 and b0 != -1 and gold.heads[b0] == s0:
            cost -= 1
            cost += not label_is_gold(gold, b0, label)
        elif is_head_in_buffer(gold, b0) and not state.is_unshiftable(b0):
            cost += 1
        return cost


cdef class Break:
    """Mark the second word of the buffer as the start of a 
    sentence. 

    Validity:
    * len(buffer) >= 2
    * B[1] == B[0] + 1
    * not is_sent_start(B[1])
    * not cannot_sent_start(B[1])

    Action:
    * mark_sent_start(B[1])

    Cost:
    * not is_sent_start(B[1])
    * Arcs between B[0] and B[1:]
    * Arcs between S and B[1]
    """
    @staticmethod
    cdef bint is_valid(const StateC* st, attr_t label) nogil:
        if st.buffer_length() < 2:
            return False
        elif st.B(1) != st.B(0) + 1:
            return False
        elif st.is_sent_start(st.B(1)):
            return False
        elif st.cannot_sent_start(st.B(1)):
            return False
        else:
            return True

    @staticmethod
    cdef int transition(StateC* st, attr_t label) nogil:
        st.set_sent_start(st.B(1), 1)

    @staticmethod
    cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
        gold = <const GoldParseStateC*>_gold
        cdef int b0 = state.B(0)
        cdef int cost = 0
        cdef int si
        for i in range(state.stack_depth()):
            si = state.S(i)
            if is_head_in_buffer(gold, si):
                cost += 1
            cost += gold.n_kids_in_buffer[si]
            # We need to score into B[1:], so subtract deps that are at b0
            if gold.heads[b0] == si:
                cost -= 1
            if gold.heads[si] == b0:
                cost -= 1
        if not is_sent_start(gold, state.B(1)) and\
                not is_sent_start_unknown(gold, state.B(1)):
            cost += 1
        return cost


cdef void* _init_state(Pool mem, int length, void* tokens) except NULL:
    st = new StateC(<const TokenC*>tokens, length)
    return <void*>st


cdef int _del_state(Pool mem, void* state, void* x) except -1:
    cdef StateC* st = <StateC*>state
    del st


cdef class ArcEager(TransitionSystem):
    def __init__(self, *args, **kwargs):
        TransitionSystem.__init__(self, *args, **kwargs)
        self.init_beam_state = _init_state
        self.del_beam_state = _del_state

    @classmethod
    def get_actions(cls, **kwargs):
        min_freq = kwargs.get('min_freq', None)
        actions = defaultdict(lambda: Counter())
        actions[SHIFT][''] = 1
        actions[REDUCE][''] = 1
        for label in kwargs.get('left_labels', []):
            actions[LEFT][label] = 1
            actions[SHIFT][label] = 1
        for label in kwargs.get('right_labels', []):
            actions[RIGHT][label] = 1
            actions[REDUCE][label] = 1
        for example in kwargs.get('examples', []):
            # use heads and labels from the reference parse (without regard to
            # misalignments between the predicted and reference)
            example_gold_preproc = Example(example.reference, example.reference)
            heads, labels = example_gold_preproc.get_aligned_parse(projectivize=True)
            for child, (head, label) in enumerate(zip(heads, labels)):
                if head is None or label is None:
                    continue
                if label.upper() == 'ROOT' :
                    label = 'ROOT'
                if head == child:
                    actions[BREAK][label] += 1
                if head < child:
                    actions[RIGHT][label] += 1
                    actions[REDUCE][''] += 1
                elif head > child:
                    actions[LEFT][label] += 1
                    actions[SHIFT][''] += 1
        if min_freq is not None:
            for action, label_freqs in actions.items():
                for label, freq in label_freqs.copy().items():
                    if freq < min_freq:
                        label_freqs.pop(label)
        # Ensure these actions are present
        actions[BREAK].setdefault('ROOT', 0)
        if kwargs.get("learn_tokens") is True:
            actions[RIGHT].setdefault('subtok', 0)
            actions[LEFT].setdefault('subtok', 0)
        # Used for backoff
        actions[RIGHT].setdefault('dep', 0)
        actions[LEFT].setdefault('dep', 0)
        return actions

    @property
    def builtin_labels(self):
        return ["ROOT", "dep"]

    @property
    def action_types(self):
        return (SHIFT, REDUCE, LEFT, RIGHT, BREAK)

    def get_doc_labels(self, doc):
        """Get the labels required for a given Doc."""
        labels = set(self.builtin_labels)
        for token in doc:
            if token.dep_:
                labels.add(token.dep_)
        return labels

    def transition(self, StateClass state, action):
        cdef Transition t = self.lookup_transition(action)
        t.do(state.c, t.label)
        return state

    def is_gold_parse(self, StateClass state, ArcEagerGold gold):
        for i in range(state.c.length):
            token = state.c.safe_get(i)
            if not arc_is_gold(&gold.c, i, i+token.head):
                return False
            elif not label_is_gold(&gold.c, i, token.dep):
                return False
        return True

    def init_gold(self, StateClass state, Example example):
        gold = ArcEagerGold(self, state, example)
        self._replace_unseen_labels(gold)
        return gold

    def init_gold_batch(self, examples):
        # TODO: Projectivity?
        all_states = self.init_batch([eg.predicted for eg in examples])
        golds = []
        states = []
        for state, eg in zip(all_states, examples):
            if self.has_gold(eg) and not state.is_final():
                golds.append(self.init_gold(state, eg))
                states.append(state)
        n_steps = sum([len(s.queue) for s in states])
        return states, golds, n_steps

    def _replace_unseen_labels(self, ArcEagerGold gold):
        backoff_label = self.strings["dep"]
        root_label = self.strings["ROOT"]
        left_labels = self.labels[LEFT]
        right_labels = self.labels[RIGHT]
        break_labels = self.labels[BREAK]
        for i in range(gold.c.length):
            if not is_head_unknown(&gold.c, i):
                head = gold.c.heads[i]
                label = self.strings[gold.c.labels[i]]
                if head > i and label not in left_labels:
                    gold.c.labels[i] = backoff_label
                elif head < i and label not in right_labels:
                    gold.c.labels[i] = backoff_label
                elif head == i and label not in break_labels:
                    gold.c.labels[i] = root_label
        return gold

    cdef Transition lookup_transition(self, object name_or_id) except *:
        if isinstance(name_or_id, int):
            return self.c[name_or_id]
        name = name_or_id
        if '-' in name:
            move_str, label_str = split_bilu_label(name)
            label = self.strings[label_str]
        else:
            move_str = name
            label = 0
        move = MOVE_NAMES.index(move_str)
        for i in range(self.n_moves):
            if self.c[i].move == move and self.c[i].label == label:
                return self.c[i]
        raise KeyError(f"Unknown transition: {name}")

    def move_name(self, int move, attr_t label):
        label_str = self.strings[label]
        if label_str:
            return MOVE_NAMES[move] + '-' + label_str
        else:
            return MOVE_NAMES[move]

    def class_name(self, int i):
        return self.move_name(self.c[i].move, self.c[i].label)

    cdef Transition init_transition(self, int clas, int move, attr_t label) except *:
        # TODO: Apparent Cython bug here when we try to use the Transition()
        # constructor with the function pointers
        cdef Transition t
        t.score = 0
        t.clas = clas
        t.move = move
        t.label = label
        if move == SHIFT:
            t.is_valid = Shift.is_valid
            t.do = Shift.transition
            t.get_cost = Shift.cost
        elif move == REDUCE:
            t.is_valid = Reduce.is_valid
            t.do = Reduce.transition
            t.get_cost = Reduce.cost
        elif move == LEFT:
            t.is_valid = LeftArc.is_valid
            t.do = LeftArc.transition
            t.get_cost = LeftArc.cost
        elif move == RIGHT:
            t.is_valid = RightArc.is_valid
            t.do = RightArc.transition
            t.get_cost = RightArc.cost
        elif move == BREAK:
            t.is_valid = Break.is_valid
            t.do = Break.transition
            t.get_cost = Break.cost
        else:
            raise ValueError(Errors.E019.format(action=move, src='arc_eager'))
        return t

    def set_annotations(self, StateClass state, Doc doc):
        for arc in state.arcs:
            doc.c[arc["child"]].head = arc["head"] - arc["child"]
            doc.c[arc["child"]].dep = arc["label"]
        for i in range(doc.length):
            if doc.c[i].head == 0:
                doc.c[i].dep = self.root_label
        set_children_from_heads(doc.c, 0, doc.length)

    def get_beam_parses(self, Beam beam):
        parses = []
        probs = beam.probs
        for i in range(beam.size):
            state = <StateC*>beam.at(i)
            if state.is_final():
                prob = probs[i]
                parse = []
                arcs = self.get_arcs(state)
                if arcs:
                    for arc in arcs:
                        dep = arc["label"]
                        label = self.strings[dep]
                        parse.append((arc["head"], arc["child"], label))
                    parses.append((prob, parse))
        return parses

    cdef get_arcs(self, StateC* state):
        cdef vector[ArcC] arcs
        state.get_arcs(&arcs)
        return list(arcs)

    def has_gold(self, Example eg, start=0, end=None):
        for word in eg.y[start:end]:
            if word.dep != 0:
                return True
        else:
            return False

    cdef int set_valid(self, int* output, const StateC* st) nogil:
        cdef int[N_MOVES] is_valid
        is_valid[SHIFT] = Shift.is_valid(st, 0)
        is_valid[REDUCE] = Reduce.is_valid(st, 0)
        is_valid[LEFT] = LeftArc.is_valid(st, 0)
        is_valid[RIGHT] = RightArc.is_valid(st, 0)
        is_valid[BREAK] = Break.is_valid(st, 0)
        cdef int i
        for i in range(self.n_moves):
            if self.c[i].label == SUBTOK_LABEL:
                output[i] = self.c[i].is_valid(st, self.c[i].label)
            else:
                output[i] = is_valid[self.c[i].move]

    def get_cost(self, StateClass stcls, gold, int i):
        if not isinstance(gold, ArcEagerGold):
            raise TypeError(Errors.E909.format(name="ArcEagerGold"))
        cdef ArcEagerGold gold_ = gold
        gold_state = gold_.c
        if self.c[i].is_valid(stcls.c, self.c[i].label):
            cost = self.c[i].get_cost(stcls.c, &gold_state, self.c[i].label)
        else:
            cost = 9000
        return cost

    cdef int set_costs(self, int* is_valid, weight_t* costs,
                       const StateC* state, gold) except -1:
        if not isinstance(gold, ArcEagerGold):
            raise TypeError(Errors.E909.format(name="ArcEagerGold"))
        cdef ArcEagerGold gold_ = gold
        gold_state = gold_.c
        update_gold_state(&gold_state, state)
        self.set_valid(is_valid, state)
        cdef int n_gold = 0
        for i in range(self.n_moves):
            if is_valid[i]:
                costs[i] = self.c[i].get_cost(state, &gold_state, self.c[i].label)
                if costs[i] <= 0:
                    n_gold += 1
            else:
                costs[i] = 9000
        if n_gold < 1:
            for i in range(self.n_moves):
                print(self.get_class_name(i), is_valid[i], costs[i])
            print("Gold sent starts?", is_sent_start(&gold_state, state.B(0)), is_sent_start(&gold_state, state.B(1)))
            raise ValueError(Errors.E1031)

    def get_oracle_sequence_from_state(self, StateClass state, ArcEagerGold gold, _debug=None):
        cdef int i
        cdef Pool mem = Pool()
        # n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
        assert self.n_moves > 0
        costs = <float*>mem.alloc(self.n_moves, sizeof(float))
        is_valid = <int*>mem.alloc(self.n_moves, sizeof(int))

        history = []
        debug_log = []
        failed = False
        while not state.is_final():
            try:
                self.set_costs(is_valid, costs, state.c, gold)
            except ValueError:
                failed = True
                break
            min_cost = min(costs[i] for i in range(self.n_moves))
            for i in range(self.n_moves):
                if is_valid[i] and costs[i] <= min_cost:
                    action = self.c[i]
                    history.append(i)
                    s0 = state.S(0)
                    b0 = state.B(0)
                    if _debug:
                        example = _debug
                        debug_log.append(" ".join((
                            self.get_class_name(i),
                            state.print_state()
                        )))
                    action.do(state.c, action.label)
                    break
            else:
                failed = False
                break
        if failed and _debug not in (False, None):
            example = _debug
            print("Actions")
            for i in range(self.n_moves):
                print(self.get_class_name(i))
            print("Gold")
            for token in example.y:
                print(token.i, token.text, token.dep_, token.head.text)
            aligned_heads, _aligned_labels = example.get_aligned_parse()
            print("Aligned heads")
            for i, head in enumerate(aligned_heads):
                print(example.x[i], example.x[head] if head is not None else "__")
            print("Aligned sent starts")
            print(example.get_aligned_sent_starts())

            print("Predicted tokens")
            print([(w.i, w.text) for w in example.x])
            s0 = state.S(0)
            b0 = state.B(0)
            debug_log.append(" ".join((
                "?",
                "S0=", (example.x[s0].text if s0 >= 0 else "-"),
                "B0=", (example.x[b0].text if b0 >= 0 else "-"),
                "S0 head?", str(state.has_head(state.S(0))),
            )))
            s0 = state.S(0)
            b0 = state.B(0)
            print("\n".join(debug_log))
            print("Arc is gold B0, S0?", arc_is_gold(&gold.c, b0, s0))
            print("Arc is gold S0, B0?", arc_is_gold(&gold.c, s0, b0))
            print("is_head_unknown(s0)", is_head_unknown(&gold.c, s0))
            print("is_head_unknown(b0)", is_head_unknown(&gold.c, b0))
            print("b0", b0, "gold.heads[s0]", gold.c.heads[s0])
            print("Stack", [example.x[i] for i in state.stack])
            print("Buffer", [example.x[i] for i in state.queue])
            raise ValueError(Errors.E024)
        return history