""" MALT-style dependency parser """ # coding: utf-8 # cython: infer_types=True from __future__ import unicode_literals from collections import Counter import ujson cimport cython cimport cython.parallel import numpy.random from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF from cpython.exc cimport PyErr_CheckSignals from libc.stdint cimport uint32_t, uint64_t from libc.string cimport memset, memcpy from libc.stdlib cimport malloc, calloc, free from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t from thinc.linear.avgtron cimport AveragedPerceptron from thinc.linalg cimport VecVec from thinc.structs cimport SparseArrayC, FeatureC, ExampleC from thinc.extra.eg cimport Example from cymem.cymem cimport Pool, Address from murmurhash.mrmr cimport hash64 from preshed.maps cimport MapStruct from preshed.maps cimport map_get from thinc.api import layerize from numpy import exp from . import _parse_features from ._parse_features cimport CONTEXT_SIZE from ._parse_features cimport fill_context from .stateclass cimport StateClass from ._state cimport StateC from .nonproj import PseudoProjectivity from .transition_system import OracleError from .transition_system cimport TransitionSystem, Transition from ..structs cimport TokenC from ..tokens.doc cimport Doc from ..strings cimport StringStore from ..gold cimport GoldParse from ..attrs cimport TAG, DEP from .._ml import build_state2vec, build_model, precompute_hiddens USE_FTRL = True DEBUG = False def set_debug(val): global DEBUG DEBUG = val def get_greedy_model_for_batch(tokvecs, TransitionSystem moves, feat_maps, upper_model): cdef int[:, :] is_valid_ cdef float[:, :] costs_ cdef int[:, :] token_ids is_valid = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='i') costs = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='f') token_ids = upper_model.ops.allocate((len(tokvecs), StateClass.nr_context_tokens()), dtype='uint64') cached, backprops = zip(*[lyr.begin_update(tokvecs) for lyr in feat_maps]) is_valid_ = is_valid costs_ = costs def forward(states, drop=0.): nonlocal is_valid, costs, token_ids, moves is_valid = is_valid[:len(states)] costs = costs[:len(states)] token_ids = token_ids[:len(states)] is_valid = is_valid[:len(states)] cdef StateClass state for i, state in enumerate(states): state.set_context_tokens(token_ids[i]) moves.set_valid(&is_valid_[i, 0], state.c) features = cached[token_ids].sum(axis=1) scores, bp_scores = upper_model.begin_update(features, drop=drop) softmaxed = upper_model.ops.softmax(scores) # Renormalize for invalid actions softmaxed *= is_valid softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1)) def backward(golds, sgd=None): nonlocal costs_, is_valid_, moves for i, (state, gold) in enumerate(zip(states, golds)): moves.set_costs(&is_valid_[i, 0], &costs_[i, 0], state, gold) d_scores = scores.copy() d_scores.fill(0) set_log_loss(upper_model.ops, d_scores, scores, is_valid_, costs_) d_tokens = bp_scores(d_scores, sgd) return d_tokens return softmaxed, backward return layerize(forward) def set_log_loss(ops, gradients, scores, is_valid, costs): """Do multi-label log loss""" n = gradients.shape[0] scores = scores * is_valid g_scores = scores * is_valid * (costs <= 0.) exps = ops.xp.exp(scores - scores.max(axis=1).reshape((n, 1))) exps *= is_valid g_exps = ops.xp.exp(g_scores - g_scores.max(axis=1).reshape((n, 1))) g_exps *= costs <= 0. g_exps *= is_valid gradients[:] = exps / exps.sum(axis=1).reshape((n, 1)) gradients -= g_exps / g_exps.sum(axis=1).reshape((n, 1)) def transition_batch(TransitionSystem moves, states, scores): cdef StateClass state cdef int guess for state, guess in zip(states, scores.argmax(axis=1)): action = moves.c[guess] action.do(state.c, action.label) def init_states(TransitionSystem moves, docs): states = [] cdef Doc doc cdef StateClass state for i, doc in enumerate(docs): state = StateClass.init(doc.c, doc.length) moves.initialize_state(state.c) states.append(state) return states cdef class Parser: """ Base class of the DependencyParser and EntityRecognizer. """ @classmethod def load(cls, path, Vocab vocab, TransitionSystem=None, require=False, **cfg): """ Load the statistical model from the supplied path. Arguments: path (Path): The path to load from. vocab (Vocab): The vocabulary. Must be shared by the documents to be processed. require (bool): Whether to raise an error if the files are not found. Returns (Parser): The newly constructed object. """ with (path / 'config.json').open() as file_: cfg = ujson.load(file_) self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg) if (path / 'model').exists(): self.model.load(str(path / 'model')) elif require: raise IOError( "Required file %s/model not found when loading" % str(path)) return self def __init__(self, Vocab vocab, TransitionSystem=None, model=None, **cfg): """ Create a Parser. Arguments: vocab (Vocab): The vocabulary object. Must be shared with documents to be processed. model (thinc Model): The statistical model. Returns (Parser): The newly constructed object. """ if TransitionSystem is None: TransitionSystem = self.TransitionSystem self.vocab = vocab cfg['actions'] = TransitionSystem.get_actions(**cfg) self.moves = TransitionSystem(vocab.strings, cfg['actions']) if model is None: model = self.build_model(**cfg) self.model = model self.cfg = cfg def __reduce__(self): return (Parser, (self.vocab, self.moves, self.model), None, None) def build_model(self, width=32, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_): nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR) self.model = build_model(width*2, 2, self.moves.n_moves) # TODO self.feature_maps = [] #build_feature_maps(nr_context_tokens, width, nr_vector) def __call__(self, Doc tokens): """ Apply the parser or entity recognizer, setting the annotations onto the Doc object. Arguments: doc (Doc): The document to be processed. Returns: None """ self.parse_batch([tokens]) def pipe(self, stream, int batch_size=1000, int n_threads=2): """ Process a stream of documents. Arguments: stream: The sequence of documents to process. batch_size (int): The number of documents to accumulate into a working set. n_threads (int): The number of threads with which to work on the buffer in parallel. Yields (Doc): Documents, in order. """ cdef Pool mem = Pool() cdef int* lengths = mem.alloc(batch_size, sizeof(int)) cdef Doc doc cdef int i cdef int nr_feat = self.model.nr_feat cdef int status queue = [] for doc in stream: queue.append(doc) if len(queue) == batch_size: self.parse_batch(queue) for doc in queue: self.moves.finalize_doc(doc) yield doc queue = [] if queue: self.parse_batch(queue) for doc in queue: self.moves.finalize_doc(doc) yield doc def parse_batch(self, docs): cdef Doc doc cdef StateClass state model = get_greedy_model_for_batch([d.tensor for d in docs], self.moves, self.model, self.feat_maps) states = [StateClass.init(doc.c, doc.length) for doc in docs] todo = list(states) while todo: scores = model(todo) transition_batch(self.moves, todo, scores) todo = [st for st in states if not st.is_final()] for state, doc in zip(states, docs): self.moves.finalize_state(state.c) for i in range(doc.length): doc.c[i] = state.c._sent[i] for doc in docs: self.moves.finalize_parse(doc) def update(self, docs, golds, drop=0., sgd=None): if isinstance(docs, Doc) and isinstance(golds, GoldParse): return self.update([docs], [golds], drop=drop) for gold in golds: self.moves.preprocess_gold(gold) model = get_greedy_model_for_batch([d.tensor for d in docs], self.moves, self.model, self.feat_maps) states = init_states(self.moves, docs) d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs] output = list(d_tokens) todo = zip(states, golds, d_tokens) while todo: states, golds, d_tokens = zip(*todo) scores, finish_update = model.begin_update(token_ids) d_state_features = finish_update(golds, sgd=sgd) for i, token_ids in enumerate(token_ids): d_tokens[i][token_ids] += d_state_features[i] transition_batch(self.moves, states) # Get unfinished states (and their matching gold and token gradients) todo = filter(lambda sp: not sp[0].py_is_final(), todo) return output def begin_training(self, docs, golds): for gold in golds: self.moves.preprocess_gold(gold) states = self._init_states(docs) tokvecs = [d.tensor for d in docs] features = self._get_features(states, tokvecs) self.model.begin_training(features) def step_through(self, Doc doc, GoldParse gold=None): """ Set up a stepwise state, to introspect and control the transition sequence. Arguments: doc (Doc): The document to step through. gold (GoldParse): Optional gold parse Returns (StepwiseState): A state object, to step through the annotation process. """ return StepwiseState(self, doc, gold=gold) def from_transition_sequence(self, Doc doc, sequence): """Control the annotations on a document by specifying a transition sequence to follow. Arguments: doc (Doc): The document to annotate. sequence: A sequence of action names, as unicode strings. Returns: None """ with self.step_through(doc) as stepwise: for transition in sequence: stepwise.transition(transition) def add_label(self, label): # Doesn't set label into serializer -- subclasses override it to do that. for action in self.moves.action_types: added = self.moves.add_action(action, label) if added: # Important that the labels be stored as a list! We need the # order, or the model goes out of synch self.cfg.setdefault('extra_labels', []).append(label) def _begin_update(self, model, states, tokvecs, drop=0.): nr_class = self.moves.n_moves attr_names = self.model.ops.allocate((2,), dtype='i') attr_names[0] = TAG attr_names[1] = DEP features = self._get_features(states, tokvecs, attr_names) scores, finish_update = self.model.begin_update(features, drop=drop) assert scores.shape[0] == len(states), (len(states), scores.shape) assert len(scores.shape) == 2 is_valid = self.model.ops.allocate((len(states), nr_class), dtype='i') self._validate_batch(is_valid, states) softmaxed = self.model.ops.softmax(scores) softmaxed *= is_valid softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1)) def backward(golds, sgd=None, losses=[], force_gold=False): nonlocal softmaxed costs = self.model.ops.allocate((len(states), nr_class), dtype='f') d_scores = self.model.ops.allocate((len(states), nr_class), dtype='f') self._cost_batch(costs, is_valid, states, golds) self._set_gradient(d_scores, scores, is_valid, costs) losses.append(numpy.abs(d_scores).sum()) if force_gold: softmaxed *= costs <= 0 return finish_update(d_scores, sgd=sgd) return softmaxed, backward def _get_features(self, states, all_tokvecs, attr_names, nF=1, nB=0, nS=2, nL=2, nR=2): n_tokens = states[0].nr_context_tokens(nF, nB, nS, nL, nR) vector_length = all_tokvecs[0].shape[1] tokens = self.model.ops.allocate((len(states), n_tokens), dtype='int32') features = self.model.ops.allocate((len(states), n_tokens, attr_names.shape[0]), dtype='uint64') tokvecs = self.model.ops.allocate((len(states), n_tokens, vector_length), dtype='f') for i, state in enumerate(states): state.set_context_tokens(tokens[i], nF, nB, nS, nL, nR) state.set_attributes(features[i], tokens[i], attr_names) state.set_token_vectors(tokvecs[i], all_tokvecs[i], tokens[i]) return (tokens, features, tokvecs) cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1: if prob <= 0 or prob >= 1.: return 0 cdef double[::1] py_probs = numpy.random.uniform(0., 1., nr_feat) cdef double* probs = &py_probs[0] for i in range(nr_feat): if probs[i] >= prob: feats[i].value /= prob else: feats[i].value = 0. cdef class StepwiseState: cdef readonly StateClass stcls cdef readonly Example eg cdef readonly Doc doc cdef readonly GoldParse gold cdef readonly Parser parser def __init__(self, Parser parser, Doc doc, GoldParse gold=None): self.parser = parser self.doc = doc if gold is not None: self.gold = gold self.parser.moves.preprocess_gold(self.gold) else: self.gold = GoldParse(doc) self.stcls = StateClass.init(doc.c, doc.length) self.parser.moves.initialize_state(self.stcls.c) self.eg = Example( nr_class=self.parser.moves.n_moves, nr_atom=CONTEXT_SIZE, nr_feat=self.parser.model.nr_feat) def __enter__(self): return self def __exit__(self, type, value, traceback): self.finish() @property def is_final(self): return self.stcls.is_final() @property def stack(self): return self.stcls.stack @property def queue(self): return self.stcls.queue @property def heads(self): return [self.stcls.H(i) for i in range(self.stcls.c.length)] @property def deps(self): return [self.doc.vocab.strings[self.stcls.c._sent[i].dep] for i in range(self.stcls.c.length)] @property def costs(self): """ Find the action-costs for the current state. """ if not self.gold: raise ValueError("Can't set costs: No GoldParse provided") self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs, self.stcls, self.gold) costs = {} for i in range(self.parser.moves.n_moves): if not self.eg.c.is_valid[i]: continue transition = self.parser.moves.c[i] name = self.parser.moves.move_name(transition.move, transition.label) costs[name] = self.eg.c.costs[i] return costs def predict(self): self.eg.reset() #self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features, # self.stcls.c) self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c) #self.parser.model.set_scoresC(self.eg.c.scores, # self.eg.c.features, self.eg.c.nr_feat) cdef Transition action = self.parser.moves.c[self.eg.guess] return self.parser.moves.move_name(action.move, action.label) def transition(self, action_name=None): if action_name is None: action_name = self.predict() moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3} if action_name == '_': action_name = self.predict() action = self.parser.moves.lookup_transition(action_name) elif action_name == 'L' or action_name == 'R': self.predict() move = moves[action_name] clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c, self.eg.c.nr_class) action = self.parser.moves.c[clas] else: action = self.parser.moves.lookup_transition(action_name) action.do(self.stcls.c, action.label) def finish(self): if self.stcls.is_final(): self.parser.moves.finalize_state(self.stcls.c) self.doc.set_parse(self.stcls.c._sent) self.parser.moves.finalize_doc(self.doc) class ParserStateError(ValueError): def __init__(self, doc): ValueError.__init__(self, "Error analysing doc -- no valid actions available. This should " "never happen, so please report the error on the issue tracker. " "Here's the thread to do so --- reopen it if it's closed:\n" "https://github.com/spacy-io/spaCy/issues/429\n" "Please include the text that the parser failed on, which is:\n" "%s" % repr(doc.text)) cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil: cdef int best = -1 for i in range(n): if costs[i] <= 0: if best == -1 or scores[i] > scores[best]: best = i return best cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions, int nr_class) except -1: cdef weight_t score = 0 cdef int mode = -1 cdef int i for i in range(nr_class): if actions[i].move == move and (mode == -1 or scores[i] >= score): mode = i score = scores[i] return mode