# coding: utf-8 from __future__ import unicode_literals import csv import logging import spacy import sys from spacy.kb import KnowledgeBase from bin.wiki_entity_linking import wikipedia_processor as wp from bin.wiki_entity_linking.train_descriptions import EntityEncoder csv.field_size_limit(sys.maxsize) logger = logging.getLogger(__name__) def create_kb( nlp, max_entities_per_alias, min_entity_freq, min_occ, entity_def_input, entity_descr_path, count_input, prior_prob_input, entity_vector_length, ): # Create the knowledge base from Wikidata entries kb = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=entity_vector_length) # read the mappings from file title_to_id = get_entity_to_id(entity_def_input) id_to_descr = get_id_to_description(entity_descr_path) # check the length of the nlp vectors if "vectors" in nlp.meta and nlp.vocab.vectors.size: input_dim = nlp.vocab.vectors_length logger.info("Loaded pretrained vectors of size %s" % input_dim) else: raise ValueError( "The `nlp` object should have access to pretrained word vectors, " " cf. https://spacy.io/usage/models#languages." ) logger.info("Get entity frequencies") entity_frequencies = wp.get_all_frequencies(count_input=count_input) logger.info("Filtering entities with fewer than {} mentions".format(min_entity_freq)) # filter the entities for in the KB by frequency, because there's just too much data (8M entities) otherwise filtered_title_to_id, entity_list, description_list, frequency_list = get_filtered_entities( title_to_id, id_to_descr, entity_frequencies, min_entity_freq ) logger.info("Left with {} entities".format(len(description_list))) logger.info("Train entity encoder") encoder = EntityEncoder(nlp, input_dim, entity_vector_length) encoder.train(description_list=description_list, to_print=True) logger.info("Get entity embeddings:") embeddings = encoder.apply_encoder(description_list) logger.info("Adding {} entities".format(len(entity_list))) kb.set_entities( entity_list=entity_list, freq_list=frequency_list, vector_list=embeddings ) logger.info("Adding aliases") _add_aliases( kb, title_to_id=filtered_title_to_id, max_entities_per_alias=max_entities_per_alias, min_occ=min_occ, prior_prob_input=prior_prob_input, ) logger.info("KB size: {} entities, {} aliases".format( kb.get_size_entities(), kb.get_size_aliases())) logger.info("Done with kb") return kb def get_filtered_entities(title_to_id, id_to_descr, entity_frequencies, min_entity_freq: int = 10): filtered_title_to_id = dict() entity_list = [] description_list = [] frequency_list = [] for title, entity in title_to_id.items(): freq = entity_frequencies.get(title, 0) desc = id_to_descr.get(entity, None) if desc and freq > min_entity_freq: entity_list.append(entity) description_list.append(desc) frequency_list.append(freq) filtered_title_to_id[title] = entity return filtered_title_to_id, entity_list, description_list, frequency_list def get_entity_to_id(entity_def_output): entity_to_id = dict() with entity_def_output.open("r", encoding="utf8") as csvfile: csvreader = csv.reader(csvfile, delimiter="|") # skip header next(csvreader) for row in csvreader: entity_to_id[row[0]] = row[1] return entity_to_id def get_id_to_description(entity_descr_path): id_to_desc = dict() with entity_descr_path.open("r", encoding="utf8") as csvfile: csvreader = csv.reader(csvfile, delimiter="|") # skip header next(csvreader) for row in csvreader: id_to_desc[row[0]] = row[1] return id_to_desc def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ, prior_prob_input): wp_titles = title_to_id.keys() # adding aliases with prior probabilities # we can read this file sequentially, it's sorted by alias, and then by count with prior_prob_input.open("r", encoding="utf8") as prior_file: # skip header prior_file.readline() line = prior_file.readline() previous_alias = None total_count = 0 counts = [] entities = [] while line: splits = line.replace("\n", "").split(sep="|") new_alias = splits[0] count = int(splits[1]) entity = splits[2] if new_alias != previous_alias and previous_alias: # done reading the previous alias --> output if len(entities) > 0: selected_entities = [] prior_probs = [] for ent_count, ent_string in zip(counts, entities): if ent_string in wp_titles: wd_id = title_to_id[ent_string] p_entity_givenalias = ent_count / total_count selected_entities.append(wd_id) prior_probs.append(p_entity_givenalias) if selected_entities: try: kb.add_alias( alias=previous_alias, entities=selected_entities, probabilities=prior_probs, ) except ValueError as e: logger.error(e) total_count = 0 counts = [] entities = [] total_count += count if len(entities) < max_entities_per_alias and count >= min_occ: counts.append(count) entities.append(entity) previous_alias = new_alias line = prior_file.readline() def read_nlp_kb(model_dir, kb_file): nlp = spacy.load(model_dir) kb = KnowledgeBase(vocab=nlp.vocab) kb.load_bulk(kb_file) logger.info("kb entities: {}".format(kb.get_size_entities())) logger.info("kb aliases: {}".format(kb.get_size_aliases())) return nlp, kb