import sys from pathlib import Path from typing import Any, Dict, Iterable, Union # set library-specific custom warning handling before doing anything else from .errors import setup_default_warnings setup_default_warnings() # noqa: E402 # These are imported as part of the API from thinc.api import Config, prefer_gpu, require_cpu, require_gpu # noqa: F401 from . import pipeline # noqa: F401 from . import util from .about import __version__ # noqa: F401 from .errors import Errors from .glossary import explain # noqa: F401 from .language import Language from .util import logger, registry # noqa: F401 from .vocab import Vocab if sys.maxunicode == 65535: raise SystemError(Errors.E130) def load( name: Union[str, Path], *, vocab: Union[Vocab, bool] = True, disable: Union[str, Iterable[str]] = util._DEFAULT_EMPTY_PIPES, enable: Union[str, Iterable[str]] = util._DEFAULT_EMPTY_PIPES, exclude: Union[str, Iterable[str]] = util._DEFAULT_EMPTY_PIPES, config: Union[Dict[str, Any], Config] = util.SimpleFrozenDict(), ) -> Language: """Load a spaCy model from an installed package or a local path. name (str): Package name or model path. vocab (Vocab): A Vocab object. If True, a vocab is created. disable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to disable. Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling nlp.enable_pipe. enable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to enable. All other pipes will be disabled (but can be enabled later using nlp.enable_pipe). exclude (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to exclude. Excluded components won't be loaded. config (Dict[str, Any] / Config): Config overrides as nested dict or dict keyed by section values in dot notation. RETURNS (Language): The loaded nlp object. """ return util.load_model( name, vocab=vocab, disable=disable, enable=enable, exclude=exclude, config=config, ) def blank( name: str, *, vocab: Union[Vocab, bool] = True, config: Union[Dict[str, Any], Config] = util.SimpleFrozenDict(), meta: Dict[str, Any] = util.SimpleFrozenDict(), ) -> Language: """Create a blank nlp object for a given language code. name (str): The language code, e.g. "en". vocab (Vocab): A Vocab object. If True, a vocab is created. config (Dict[str, Any] / Config): Optional config overrides. meta (Dict[str, Any]): Overrides for nlp.meta. RETURNS (Language): The nlp object. """ LangClass = util.get_lang_class(name) # We should accept both dot notation and nested dict here for consistency config = util.dot_to_dict(config) return LangClass.from_config(config, vocab=vocab, meta=meta) def info(*args, **kwargs): from .cli.info import info as cli_info return cli_info(*args, **kwargs)