import pytest from spacy import registry from spacy.tokens import Span from spacy.language import Language from spacy.pipeline import EntityRuler from spacy.errors import MatchPatternError from thinc.api import NumpyOps, get_current_ops @pytest.fixture def nlp(): return Language() @pytest.fixture @registry.misc("entity_ruler_patterns") def patterns(): return [ {"label": "HELLO", "pattern": "hello world"}, {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]}, {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]}, {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]}, {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"}, {"label": "TECH_ORG", "pattern": "Microsoft", "id": "a2"}, ] @Language.component("add_ent") def add_ent_component(doc): doc.ents = [Span(doc, 0, 3, label="ORG")] return doc def test_entity_ruler_init(nlp, patterns): ruler = EntityRuler(nlp, patterns=patterns) assert len(ruler) == len(patterns) assert len(ruler.labels) == 4 assert "HELLO" in ruler assert "BYE" in ruler ruler = nlp.add_pipe("entity_ruler") ruler.add_patterns(patterns) doc = nlp("hello world bye bye") assert len(doc.ents) == 2 assert doc.ents[0].label_ == "HELLO" assert doc.ents[1].label_ == "BYE" def test_entity_ruler_no_patterns_warns(nlp): ruler = EntityRuler(nlp) assert len(ruler) == 0 assert len(ruler.labels) == 0 nlp.add_pipe("entity_ruler") assert nlp.pipe_names == ["entity_ruler"] with pytest.warns(UserWarning): doc = nlp("hello world bye bye") assert len(doc.ents) == 0 def test_entity_ruler_init_patterns(nlp, patterns): # initialize with patterns ruler = nlp.add_pipe("entity_ruler") assert len(ruler.labels) == 0 ruler.initialize(lambda: [], patterns=patterns) assert len(ruler.labels) == 4 doc = nlp("hello world bye bye") assert doc.ents[0].label_ == "HELLO" assert doc.ents[1].label_ == "BYE" nlp.remove_pipe("entity_ruler") # initialize with patterns from misc registry nlp.config["initialize"]["components"]["entity_ruler"] = { "patterns": {"@misc": "entity_ruler_patterns"} } ruler = nlp.add_pipe("entity_ruler") assert len(ruler.labels) == 0 nlp.initialize() assert len(ruler.labels) == 4 doc = nlp("hello world bye bye") assert doc.ents[0].label_ == "HELLO" assert doc.ents[1].label_ == "BYE" def test_entity_ruler_init_clear(nlp, patterns): """Test that initialization clears patterns.""" ruler = nlp.add_pipe("entity_ruler") ruler.add_patterns(patterns) assert len(ruler.labels) == 4 ruler.initialize(lambda: []) assert len(ruler.labels) == 0 def test_entity_ruler_existing(nlp, patterns): ruler = nlp.add_pipe("entity_ruler") ruler.add_patterns(patterns) nlp.add_pipe("add_ent", before="entity_ruler") doc = nlp("OH HELLO WORLD bye bye") assert len(doc.ents) == 2 assert doc.ents[0].label_ == "ORG" assert doc.ents[1].label_ == "BYE" def test_entity_ruler_existing_overwrite(nlp, patterns): ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True}) ruler.add_patterns(patterns) nlp.add_pipe("add_ent", before="entity_ruler") doc = nlp("OH HELLO WORLD bye bye") assert len(doc.ents) == 2 assert doc.ents[0].label_ == "HELLO" assert doc.ents[0].text == "HELLO" assert doc.ents[1].label_ == "BYE" def test_entity_ruler_existing_complex(nlp, patterns): ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True}) ruler.add_patterns(patterns) nlp.add_pipe("add_ent", before="entity_ruler") doc = nlp("foo foo bye bye") assert len(doc.ents) == 2 assert doc.ents[0].label_ == "COMPLEX" assert doc.ents[1].label_ == "BYE" assert len(doc.ents[0]) == 2 assert len(doc.ents[1]) == 2 def test_entity_ruler_entity_id(nlp, patterns): ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True}) ruler.add_patterns(patterns) doc = nlp("Apple is a technology company") assert len(doc.ents) == 1 assert doc.ents[0].label_ == "TECH_ORG" assert doc.ents[0].ent_id_ == "a1" def test_entity_ruler_cfg_ent_id_sep(nlp, patterns): config = {"overwrite_ents": True, "ent_id_sep": "**"} ruler = nlp.add_pipe("entity_ruler", config=config) ruler.add_patterns(patterns) assert "TECH_ORG**a1" in ruler.phrase_patterns doc = nlp("Apple is a technology company") assert len(doc.ents) == 1 assert doc.ents[0].label_ == "TECH_ORG" assert doc.ents[0].ent_id_ == "a1" def test_entity_ruler_serialize_bytes(nlp, patterns): ruler = EntityRuler(nlp, patterns=patterns) assert len(ruler) == len(patterns) assert len(ruler.labels) == 4 ruler_bytes = ruler.to_bytes() new_ruler = EntityRuler(nlp) assert len(new_ruler) == 0 assert len(new_ruler.labels) == 0 new_ruler = new_ruler.from_bytes(ruler_bytes) assert len(new_ruler) == len(patterns) assert len(new_ruler.labels) == 4 assert len(new_ruler.patterns) == len(ruler.patterns) for pattern in ruler.patterns: assert pattern in new_ruler.patterns assert sorted(new_ruler.labels) == sorted(ruler.labels) def test_entity_ruler_serialize_phrase_matcher_attr_bytes(nlp, patterns): ruler = EntityRuler(nlp, phrase_matcher_attr="LOWER", patterns=patterns) assert len(ruler) == len(patterns) assert len(ruler.labels) == 4 ruler_bytes = ruler.to_bytes() new_ruler = EntityRuler(nlp) assert len(new_ruler) == 0 assert len(new_ruler.labels) == 0 assert new_ruler.phrase_matcher_attr is None new_ruler = new_ruler.from_bytes(ruler_bytes) assert len(new_ruler) == len(patterns) assert len(new_ruler.labels) == 4 assert new_ruler.phrase_matcher_attr == "LOWER" def test_entity_ruler_validate(nlp): ruler = EntityRuler(nlp) validated_ruler = EntityRuler(nlp, validate=True) valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]} invalid_pattern = {"label": "HELLO", "pattern": [{"ASDF": "HELLO"}]} # invalid pattern raises error without validate with pytest.raises(ValueError): ruler.add_patterns([invalid_pattern]) # valid pattern is added without errors with validate validated_ruler.add_patterns([valid_pattern]) # invalid pattern raises error with validate with pytest.raises(MatchPatternError): validated_ruler.add_patterns([invalid_pattern]) def test_entity_ruler_properties(nlp, patterns): ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True) assert sorted(ruler.labels) == sorted(["HELLO", "BYE", "COMPLEX", "TECH_ORG"]) assert sorted(ruler.ent_ids) == ["a1", "a2"] def test_entity_ruler_overlapping_spans(nlp): ruler = EntityRuler(nlp) patterns = [ {"label": "FOOBAR", "pattern": "foo bar"}, {"label": "BARBAZ", "pattern": "bar baz"}, ] ruler.add_patterns(patterns) doc = ruler(nlp.make_doc("foo bar baz")) assert len(doc.ents) == 1 assert doc.ents[0].label_ == "FOOBAR" @pytest.mark.parametrize("n_process", [1, 2]) def test_entity_ruler_multiprocessing(nlp, n_process): if isinstance(get_current_ops, NumpyOps) or n_process < 2: texts = ["I enjoy eating Pizza Hut pizza."] patterns = [{"label": "FASTFOOD", "pattern": "Pizza Hut", "id": "1234"}] ruler = nlp.add_pipe("entity_ruler") ruler.add_patterns(patterns) for doc in nlp.pipe(texts, n_process=2): for ent in doc.ents: assert ent.ent_id_ == "1234"