from functools import partial from typing import Type, Callable, TYPE_CHECKING from thinc.layers import with_nvtx_range from thinc.model import Model, wrap_model_recursive from ..util import registry if TYPE_CHECKING: # This lets us add type hints for mypy etc. without causing circular imports from ..language import Language # noqa: F401 @registry.callbacks("spacy.models_with_nvtx_range.v1") def create_models_with_nvtx_range( forward_color: int = -1, backprop_color: int = -1 ) -> Callable[["Language"], "Language"]: def models_with_nvtx_range(nlp): pipes = [ pipe for _, pipe in nlp.components if hasattr(pipe, "is_trainable") and pipe.is_trainable ] # We need process all models jointly to avoid wrapping callbacks twice. models = Model( "wrap_with_nvtx_range", forward=lambda model, X, is_train: ..., layers=[pipe.model for pipe in pipes], ) for node in models.walk(): with_nvtx_range( node, forward_color=forward_color, backprop_color=backprop_color ) return nlp return models_with_nvtx_range