from collections.abc import Iterable as IterableInstance import warnings import numpy from murmurhash.mrmr cimport hash64 from ..tokens.doc cimport Doc from ..tokens.span cimport Span from ..tokens.span import Span from ..attrs import IDS from .alignment import Alignment from .iob_utils import biluo_to_iob, offsets_to_biluo_tags, doc_to_biluo_tags from .iob_utils import biluo_tags_to_spans, remove_bilu_prefix from ..errors import Errors, Warnings from ..pipeline._parser_internals import nonproj from ..tokens.token cimport MISSING_DEP from ..util import logger, to_ternary_int, all_equal cpdef Doc annotations_to_doc(vocab, tok_annot, doc_annot): """ Create a Doc from dictionaries with token and doc annotations. """ attrs, array = _annot2array(vocab, tok_annot, doc_annot) output = Doc(vocab, words=tok_annot["ORTH"], spaces=tok_annot["SPACY"]) if "entities" in doc_annot: _add_entities_to_doc(output, doc_annot["entities"]) if "spans" in doc_annot: _add_spans_to_doc(output, doc_annot["spans"]) if array.size: output = output.from_array(attrs, array) # links are currently added with ENT_KB_ID on the token level output.cats.update(doc_annot.get("cats", {})) return output def validate_examples(examples, method): """Check that a batch of examples received during processing is valid. This function lives here to prevent circular imports. examples (Iterable[Examples]): A batch of examples. method (str): The method name to show in error messages. """ if not isinstance(examples, IterableInstance): err = Errors.E978.format(name=method, types=type(examples)) raise TypeError(err) wrong = set([type(eg) for eg in examples if not isinstance(eg, Example)]) if wrong: err = Errors.E978.format(name=method, types=wrong) raise TypeError(err) def validate_get_examples(get_examples, method): """Check that a generator of a batch of examples received during processing is valid: the callable produces a non-empty list of Example objects. This function lives here to prevent circular imports. get_examples (Callable[[], Iterable[Example]]): A function that produces a batch of examples. method (str): The method name to show in error messages. """ if get_examples is None or not hasattr(get_examples, "__call__"): err = Errors.E930.format(method=method, obj=type(get_examples)) raise TypeError(err) examples = get_examples() if not examples: err = Errors.E930.format(method=method, obj=examples) raise TypeError(err) validate_examples(examples, method) cdef class Example: def __init__(self, Doc predicted, Doc reference, *, alignment=None): if predicted is None: raise TypeError(Errors.E972.format(arg="predicted")) if reference is None: raise TypeError(Errors.E972.format(arg="reference")) self.predicted = predicted self.reference = reference self._cached_alignment = alignment def __len__(self): return len(self.predicted) property predicted: def __get__(self): return self.x def __set__(self, doc): self.x = doc self._cached_alignment = None self._cached_words_x = [t.text for t in doc] property reference: def __get__(self): return self.y def __set__(self, doc): self.y = doc self._cached_alignment = None self._cached_words_y = [t.text for t in doc] def copy(self): return Example( self.x.copy(), self.y.copy() ) @classmethod def from_dict(cls, Doc predicted, dict example_dict): if predicted is None: raise ValueError(Errors.E976.format(n="first", type="Doc")) if example_dict is None: raise ValueError(Errors.E976.format(n="second", type="dict")) example_dict = _fix_legacy_dict_data(example_dict) tok_dict, doc_dict = _parse_example_dict_data(example_dict) if "ORTH" not in tok_dict: tok_dict["ORTH"] = [tok.text for tok in predicted] tok_dict["SPACY"] = [tok.whitespace_ for tok in predicted] return Example( predicted, annotations_to_doc(predicted.vocab, tok_dict, doc_dict) ) @property def alignment(self): x_sig = hash64(self.x.c, sizeof(self.x.c[0]) * self.x.length, 0) y_sig = hash64(self.y.c, sizeof(self.y.c[0]) * self.y.length, 0) if self._cached_alignment is None: words_x = [token.text for token in self.x] words_y = [token.text for token in self.y] self._x_sig = x_sig self._y_sig = y_sig self._cached_words_x = words_x self._cached_words_y = words_y self._cached_alignment = Alignment.from_strings(words_x, words_y) return self._cached_alignment elif self._x_sig == x_sig and self._y_sig == y_sig: # If we have a cached alignment, check whether the cache is invalid # due to retokenization. To make this check fast in loops, we first # check a hash of the TokenC arrays. return self._cached_alignment else: words_x = [token.text for token in self.x] words_y = [token.text for token in self.y] if words_x == self._cached_words_x and words_y == self._cached_words_y: self._x_sig = x_sig self._y_sig = y_sig return self._cached_alignment else: self._cached_alignment = Alignment.from_strings(words_x, words_y) self._cached_words_x = words_x self._cached_words_y = words_y self._x_sig = x_sig self._y_sig = y_sig return self._cached_alignment def _get_aligned_vectorized(self, align, gold_values): # Fast path for Doc attributes/fields that are predominantly a single value, # i.e., TAG, POS, MORPH. x2y_single_toks = [] x2y_single_toks_i = [] x2y_multiple_toks = [] x2y_multiple_toks_i = [] # Gather indices of gold tokens aligned to the candidate tokens into two buckets. # Bucket 1: All tokens that have a one-to-one alignment. # Bucket 2: All tokens that have a one-to-many alignment. for idx, token in enumerate(self.predicted): aligned_gold_i = align[token.i] aligned_gold_len = len(aligned_gold_i) if aligned_gold_len == 1: x2y_single_toks.append(aligned_gold_i.item()) x2y_single_toks_i.append(idx) elif aligned_gold_len > 1: x2y_multiple_toks.append(aligned_gold_i) x2y_multiple_toks_i.append(idx) # Map elements of the first bucket directly to the output array. output = numpy.full(len(self.predicted), None) output[x2y_single_toks_i] = gold_values[x2y_single_toks].squeeze() # Collapse many-to-one alignments into one-to-one alignments if they # share the same value. Map to None in all other cases. for i in range(len(x2y_multiple_toks)): aligned_gold_values = gold_values[x2y_multiple_toks[i]] # If all aligned tokens have the same value, use it. if all_equal(aligned_gold_values): x2y_multiple_toks[i] = aligned_gold_values[0].item() else: x2y_multiple_toks[i] = None output[x2y_multiple_toks_i] = x2y_multiple_toks return output.tolist() def _get_aligned_non_vectorized(self, align, gold_values): # Slower path for fields that return multiple values (resulting # in ragged arrays that cannot be vectorized trivially). output = [None] * len(self.predicted) for token in self.predicted: aligned_gold_i = align[token.i] values = gold_values[aligned_gold_i].ravel() if len(values) == 1: output[token.i] = values.item() elif all_equal(values): # If all aligned tokens have the same value, use it. output[token.i] = values[0].item() return output def get_aligned(self, field, as_string=False): """Return an aligned array for a token attribute.""" align = self.alignment.x2y gold_values = self.reference.to_array([field]) if len(gold_values.shape) == 1: output = self._get_aligned_vectorized(align, gold_values) else: output = self._get_aligned_non_vectorized(align, gold_values) vocab = self.reference.vocab if as_string and field not in ["ENT_IOB", "SENT_START"]: output = [vocab.strings[o] if o is not None else o for o in output] return output def get_aligned_parse(self, projectivize=True): cand_to_gold = self.alignment.x2y gold_to_cand = self.alignment.y2x heads = [token.head.i for token in self.y] deps = [token.dep_ for token in self.y] if projectivize: proj_heads, proj_deps = nonproj.projectivize(heads, deps) has_deps = [token.has_dep() for token in self.y] has_heads = [token.has_head() for token in self.y] # ensure that missing data remains missing heads = [h if has_heads[i] else heads[i] for i, h in enumerate(proj_heads)] deps = [d if has_deps[i] else deps[i] for i, d in enumerate(proj_deps)] # Select all candidate tokens that are aligned to a single gold token. c2g_single_toks = numpy.where(cand_to_gold.lengths == 1)[0] # Fetch all aligned gold token incides. if c2g_single_toks.shape == cand_to_gold.lengths.shape: # This the most likely case. gold_i = cand_to_gold[:] else: gold_i = numpy.vectorize(lambda x: cand_to_gold[int(x)][0], otypes='i')(c2g_single_toks) # Fetch indices of all gold heads for the aligned gold tokens. heads = numpy.asarray(heads, dtype='i') gold_head_i = heads[gold_i] # Select all gold tokens that are heads of the previously selected # gold tokens (and are aligned to a single candidate token). g2c_len_heads = gold_to_cand.lengths[gold_head_i] g2c_len_heads = numpy.where(g2c_len_heads == 1)[0] g2c_i = numpy.vectorize(lambda x: gold_to_cand[int(x)][0], otypes='i')(gold_head_i[g2c_len_heads]).squeeze() # Update head/dep alignments with the above. aligned_heads = numpy.full((self.x.length), None) aligned_heads[c2g_single_toks[g2c_len_heads]] = g2c_i deps = numpy.asarray(deps) aligned_deps = numpy.full((self.x.length), None) aligned_deps[c2g_single_toks] = deps[gold_i] return aligned_heads.tolist(), aligned_deps.tolist() def get_aligned_sent_starts(self): """Get list of SENT_START attributes aligned to the predicted tokenization. If the reference does not have sentence starts, return a list of None values. """ if self.y.has_annotation("SENT_START"): align = self.alignment.y2x sent_starts = [False] * len(self.x) for y_sent in self.y.sents: x_start = int(align[y_sent.start][0]) sent_starts[x_start] = True return sent_starts else: return [None] * len(self.x) def get_aligned_spans_x2y(self, x_spans, allow_overlap=False): return self._get_aligned_spans(self.y, x_spans, self.alignment.x2y, allow_overlap) def get_aligned_spans_y2x(self, y_spans, allow_overlap=False): return self._get_aligned_spans(self.x, y_spans, self.alignment.y2x, allow_overlap) def _get_aligned_spans(self, doc, spans, align, allow_overlap): seen = set() output = [] for span in spans: indices = align[span.start : span.end] if not allow_overlap: indices = [idx for idx in indices if idx not in seen] if len(indices) >= 1: aligned_span = Span(doc, indices[0], indices[-1] + 1, label=span.label) target_text = span.text.lower().strip().replace(" ", "") our_text = aligned_span.text.lower().strip().replace(" ", "") if our_text == target_text: output.append(aligned_span) seen.update(indices) return output def get_aligned_ents_and_ner(self): if not self.y.has_annotation("ENT_IOB"): return [], [None] * len(self.x) x_ents = self.get_aligned_spans_y2x(self.y.ents, allow_overlap=False) # Default to 'None' for missing values x_tags = offsets_to_biluo_tags( self.x, [(e.start_char, e.end_char, e.label_) for e in x_ents], missing=None ) # Now fill the tokens we can align to O. O = 2 # I=1, O=2, B=3 for i, ent_iob in enumerate(self.get_aligned("ENT_IOB")): if x_tags[i] is None: if ent_iob == O: x_tags[i] = "O" elif self.x[i].is_space: x_tags[i] = "O" return x_ents, x_tags def get_aligned_ner(self): x_ents, x_tags = self.get_aligned_ents_and_ner() return x_tags def get_matching_ents(self, check_label=True): """Return entities that are shared between predicted and reference docs. If `check_label` is True, entities must have matching labels to be kept. Otherwise only the character indices need to match. """ gold = {} for ent in self.reference.ents: gold[(ent.start_char, ent.end_char)] = ent.label keep = [] for ent in self.predicted.ents: key = (ent.start_char, ent.end_char) if key not in gold: continue if check_label and ent.label != gold[key]: continue keep.append(ent) return keep def to_dict(self): return { "doc_annotation": { "cats": dict(self.reference.cats), "entities": doc_to_biluo_tags(self.reference), "links": self._links_to_dict() }, "token_annotation": { "ORTH": [t.text for t in self.reference], "SPACY": [bool(t.whitespace_) for t in self.reference], "TAG": [t.tag_ for t in self.reference], "LEMMA": [t.lemma_ for t in self.reference], "POS": [t.pos_ for t in self.reference], "MORPH": [str(t.morph) for t in self.reference], "HEAD": [t.head.i for t in self.reference], "DEP": [t.dep_ for t in self.reference], "SENT_START": [int(bool(t.is_sent_start)) for t in self.reference] } } def _links_to_dict(self): links = {} for ent in self.reference.ents: if ent.kb_id_: links[(ent.start_char, ent.end_char)] = {ent.kb_id_: 1.0} return links def split_sents(self): """ Split the token annotations into multiple Examples based on sent_starts and return a list of the new Examples""" if not self.reference.has_annotation("SENT_START"): return [self] align = self.alignment.y2x seen_indices = set() output = [] for y_sent in self.reference.sents: indices = align[y_sent.start : y_sent.end] indices = [idx for idx in indices if idx not in seen_indices] if indices: x_sent = self.predicted[indices[0] : indices[-1] + 1] output.append(Example(x_sent.as_doc(), y_sent.as_doc())) seen_indices.update(indices) return output property text: def __get__(self): return self.x.text def __str__(self): return str(self.to_dict()) def __repr__(self): return str(self.to_dict()) def _annot2array(vocab, tok_annot, doc_annot): attrs = [] values = [] for key, value in doc_annot.items(): if value: if key in ["entities", "cats", "spans"]: pass elif key == "links": ent_kb_ids = _parse_links(vocab, tok_annot["ORTH"], tok_annot["SPACY"], value) tok_annot["ENT_KB_ID"] = ent_kb_ids else: raise ValueError(Errors.E974.format(obj="doc", key=key)) for key, value in tok_annot.items(): if key not in IDS: raise ValueError(Errors.E974.format(obj="token", key=key)) elif key in ["ORTH", "SPACY"]: pass elif key == "HEAD": attrs.append(key) values.append([h-i if h is not None else 0 for i, h in enumerate(value)]) elif key == "DEP": attrs.append(key) values.append([vocab.strings.add(h) if h is not None else MISSING_DEP for h in value]) elif key == "SENT_START": attrs.append(key) values.append([to_ternary_int(v) for v in value]) elif key == "MORPH": attrs.append(key) values.append([vocab.morphology.add(v) for v in value]) else: attrs.append(key) if not all(isinstance(v, str) for v in value): types = set([type(v) for v in value]) raise TypeError(Errors.E969.format(field=key, types=types)) from None values.append([vocab.strings.add(v) for v in value]) array = numpy.asarray(values, dtype="uint64") return attrs, array.T def _add_spans_to_doc(doc, spans_data): if not isinstance(spans_data, dict): raise ValueError(Errors.E879) for key, span_list in spans_data.items(): spans = [] if not isinstance(span_list, list): raise ValueError(Errors.E879) for span_tuple in span_list: if not isinstance(span_tuple, (list, tuple)) or len(span_tuple) < 2: raise ValueError(Errors.E879) start_char = span_tuple[0] end_char = span_tuple[1] label = 0 kb_id = 0 if len(span_tuple) > 2: label = span_tuple[2] if len(span_tuple) > 3: kb_id = span_tuple[3] span = doc.char_span(start_char, end_char, label=label, kb_id=kb_id) spans.append(span) doc.spans[key] = spans def _add_entities_to_doc(doc, ner_data): if ner_data is None: return elif ner_data == []: doc.ents = [] elif not isinstance(ner_data, (list, tuple)): raise ValueError(Errors.E973) elif isinstance(ner_data[0], (list, tuple)): return _add_entities_to_doc( doc, offsets_to_biluo_tags(doc, ner_data) ) elif isinstance(ner_data[0], str) or ner_data[0] is None: return _add_entities_to_doc( doc, biluo_tags_to_spans(doc, ner_data) ) elif isinstance(ner_data[0], Span): entities = [] missing = [] for span in ner_data: if span.label: entities.append(span) else: missing.append(span) doc.set_ents(entities, missing=missing) else: raise ValueError(Errors.E973) def _parse_example_dict_data(example_dict): return ( example_dict["token_annotation"], example_dict["doc_annotation"] ) def _fix_legacy_dict_data(example_dict): token_dict = example_dict.get("token_annotation", {}) doc_dict = example_dict.get("doc_annotation", {}) for key, value in example_dict.items(): if value is not None: if key in ("token_annotation", "doc_annotation"): pass elif key == "ids": pass elif key in ("cats", "links", "spans"): doc_dict[key] = value elif key in ("ner", "entities"): doc_dict["entities"] = value else: token_dict[key] = value # Remap keys remapping = { "words": "ORTH", "tags": "TAG", "pos": "POS", "lemmas": "LEMMA", "deps": "DEP", "heads": "HEAD", "sent_starts": "SENT_START", "morphs": "MORPH", "spaces": "SPACY", } old_token_dict = token_dict token_dict = {} for key, value in old_token_dict.items(): if key in ("text", "ids", "brackets"): pass elif key in remapping.values(): token_dict[key] = value elif key.lower() in remapping: token_dict[remapping[key.lower()]] = value else: all_keys = set(remapping.values()) all_keys.update(remapping.keys()) raise KeyError(Errors.E983.format(key=key, dict="token_annotation", keys=all_keys)) text = example_dict.get("text", example_dict.get("raw")) if _has_field(token_dict, "ORTH") and not _has_field(token_dict, "SPACY"): token_dict["SPACY"] = _guess_spaces(text, token_dict["ORTH"]) if "HEAD" in token_dict and "SENT_START" in token_dict: # If heads are set, we don't also redundantly specify SENT_START. token_dict.pop("SENT_START") logger.debug(Warnings.W092) return { "token_annotation": token_dict, "doc_annotation": doc_dict } def _has_field(annot, field): if field not in annot: return False elif annot[field] is None: return False elif len(annot[field]) == 0: return False elif all([value is None for value in annot[field]]): return False else: return True def _parse_ner_tags(biluo_or_offsets, vocab, words, spaces): if isinstance(biluo_or_offsets[0], (list, tuple)): # Convert to biluo if necessary # This is annoying but to convert the offsets we need a Doc # that has the target tokenization. reference = Doc(vocab, words=words, spaces=spaces) biluo = offsets_to_biluo_tags(reference, biluo_or_offsets) else: biluo = biluo_or_offsets ent_iobs = [] ent_types = [] for iob_tag in biluo_to_iob(biluo): if iob_tag in (None, "-"): ent_iobs.append("") ent_types.append("") else: ent_iobs.append(iob_tag.split("-")[0]) if iob_tag.startswith("I") or iob_tag.startswith("B"): ent_types.append(remove_bilu_prefix(iob_tag)) else: ent_types.append("") return ent_iobs, ent_types def _parse_links(vocab, words, spaces, links): reference = Doc(vocab, words=words, spaces=spaces) starts = {token.idx: token.i for token in reference} ends = {token.idx + len(token): token.i for token in reference} ent_kb_ids = ["" for _ in reference] for index, annot_dict in links.items(): true_kb_ids = [] for key, value in annot_dict.items(): if value == 1.0: true_kb_ids.append(key) if len(true_kb_ids) > 1: raise ValueError(Errors.E980) if len(true_kb_ids) == 1: start_char, end_char = index start_token = starts.get(start_char) end_token = ends.get(end_char) if start_token is None or end_token is None: raise ValueError(Errors.E981) for i in range(start_token, end_token+1): ent_kb_ids[i] = true_kb_ids[0] return ent_kb_ids def _guess_spaces(text, words): if text is None: return None spaces = [] text_pos = 0 # align words with text for word in words: try: word_start = text[text_pos:].index(word) except ValueError: spaces.append(True) continue text_pos += word_start + len(word) if text_pos < len(text) and text[text_pos] == " ": spaces.append(True) else: spaces.append(False) return spaces