//- 💫 DOCS > USAGE > FACTS & FIGURES > BENCHMARKS > MODEL COMPARISON p | In this section, we provide benchmark accuracies for the pre-trained | model pipelines we distribute with spaCy. Evaluations are conducted | end-to-end from raw text, with no "gold standard" pre-processing, over | text from a mix of genres where possible. +under-construction +aside("Methodology") | The evaluation was conducted on raw text with no gold standard | information. The parser, tagger and entity recognizer were trained on the | #[+a("https://www.gabormelli.com/RKB/OntoNotes_Corpus") OntoNotes 5] | corpus, the word vectors on #[+a("http://commoncrawl.org") Common Crawl]. +table(["Model", "spaCy", "Type", "UAS", "NER F", "POS", "WPS", "Size"]) +row +cell #[+a("/models/en#en_core_web_sm") #[code en_core_web_sm]] 2.0.0a5 each data in ["2.x", "neural"] +cell.u-text-right=data +cell.u-text-right 91.4 +cell.u-text-right 85.5 +cell.u-text-right 97.0 +cell.u-text-right 8.2k +cell.u-text-right #[strong 36 MB] +row +cell #[+a("/models/en#en_core_web_lg") #[code en_core_web_lg]] 2.0.0a0 each data in ["2.x", "neural"] +cell.u-text-right=data +cell.u-text-right #[strong 91.9] +cell.u-text-right #[strong 86.4] +cell.u-text-right #[strong 97.2] +cell.u-text-right #[em n/a] +cell.u-text-right 667 MB +row("divider") +cell #[code en_core_web_sm] 1.2.0 each data in ["1.x", "linear", 86.6, 78.5, 96.6] +cell.u-text-right=data +cell.u-text-right #[strong 25.7k] +cell.u-text-right 50 MB +row +cell #[code en_core_web_md] 1.2.1 each data in ["1.x", "linear", 90.6, 81.4, 96.7, "18.8k", "1 GB"] +cell.u-text-right=data