//- 💫 DOCS > USAGE > FACTS & FIGURES > FEATURE COMPARISON p | Here's a quick comparison of the functionalities offered by spaCy, | #[+a("https://github.com/tensorflow/models/tree/master/syntaxnet") SyntaxNet], | #[+a("http://www.nltk.org/py-modindex.html") NLTK] and | #[+a("http://stanfordnlp.github.io/CoreNLP/") CoreNLP]. +table(["", "spaCy", "SyntaxNet", "NLTK", "CoreNLP"]) +row +cell Programming language each lang in ["Python", "C++", "Python", "Java"] +cell.u-text-small.u-text-center=lang +row +cell Neural network models each icon in ["pro", "pro", "con", "pro"] +cell.u-text-center #[+procon(icon)] +row +cell Integrated word vectors each icon in ["pro", "con", "con", "con"] +cell.u-text-center #[+procon(icon)] +row +cell Multi-language support each icon in ["pro", "pro", "pro", "pro"] +cell.u-text-center #[+procon(icon)] +row +cell Tokenization each icon in ["pro", "pro", "pro", "pro"] +cell.u-text-center #[+procon(icon)] +row +cell Part-of-speech tagging each icon in ["pro", "pro", "pro", "pro"] +cell.u-text-center #[+procon(icon)] +row +cell Sentence segmentation each icon in ["pro", "pro", "pro", "pro"] +cell.u-text-center #[+procon(icon)] +row +cell Dependency parsing each icon in ["pro", "pro", "con", "pro"] +cell.u-text-center #[+procon(icon)] +row +cell Entity recognition each icon in ["pro", "con", "pro", "pro"] +cell.u-text-center #[+procon(icon)] +row +cell Coreference resolution each icon in ["con", "con", "con", "pro"] +cell.u-text-center #[+procon(icon)]