from random import shuffle import logging import numpy as np from thinc.api import Model, chain, CosineDistance, Linear from spacy.util import create_default_optimizer logger = logging.getLogger(__name__) class EntityEncoder: """ Train the embeddings of entity descriptions to fit a fixed-size entity vector (e.g. 64D). This entity vector will be stored in the KB, for further downstream use in the entity model. """ DROP = 0 BATCH_SIZE = 1000 # Set min. acceptable loss to avoid a 'mean of empty slice' warning by numpy MIN_LOSS = 0.01 # Reasonable default to stop training when things are not improving MAX_NO_IMPROVEMENT = 20 def __init__(self, nlp, input_dim, desc_width, epochs=5): self.nlp = nlp self.input_dim = input_dim self.desc_width = desc_width self.epochs = epochs self.distance = CosineDistance(ignore_zeros=True, normalize=False) def apply_encoder(self, description_list): if self.encoder is None: raise ValueError("Can not apply encoder before training it") batch_size = 100000 start = 0 stop = min(batch_size, len(description_list)) encodings = [] while start < len(description_list): docs = list(self.nlp.pipe(description_list[start:stop])) doc_embeddings = [self._get_doc_embedding(doc) for doc in docs] enc = self.encoder(np.asarray(doc_embeddings)) encodings.extend(enc.tolist()) start = start + batch_size stop = min(stop + batch_size, len(description_list)) logger.info("Encoded: {} entities".format(stop)) return encodings def train(self, description_list, to_print=False): processed, loss = self._train_model(description_list) if to_print: logger.info( "Trained entity descriptions on {} ".format(processed) + "(non-unique) descriptions across {} ".format(self.epochs) + "epochs" ) logger.info("Final loss: {}".format(loss)) def _train_model(self, description_list): best_loss = 1.0 iter_since_best = 0 self._build_network(self.input_dim, self.desc_width) processed = 0 loss = 1 # copy this list so that shuffling does not affect other functions descriptions = description_list.copy() to_continue = True for i in range(self.epochs): shuffle(descriptions) batch_nr = 0 start = 0 stop = min(self.BATCH_SIZE, len(descriptions)) while to_continue and start < len(descriptions): batch = [] for descr in descriptions[start:stop]: doc = self.nlp(descr) doc_vector = self._get_doc_embedding(doc) batch.append(doc_vector) loss = self._update(batch) if batch_nr % 25 == 0: logger.info("loss: {} ".format(loss)) processed += len(batch) # in general, continue training if we haven't reached our ideal min yet to_continue = loss > self.MIN_LOSS # store the best loss and track how long it's been if loss < best_loss: best_loss = loss iter_since_best = 0 else: iter_since_best += 1 # stop learning if we haven't seen improvement since the last few iterations if iter_since_best > self.MAX_NO_IMPROVEMENT: to_continue = False batch_nr += 1 start = start + self.BATCH_SIZE stop = min(stop + self.BATCH_SIZE, len(descriptions)) return processed, loss @staticmethod def _get_doc_embedding(doc): indices = np.zeros((len(doc),), dtype="i") for i, word in enumerate(doc): if word.orth in doc.vocab.vectors.key2row: indices[i] = doc.vocab.vectors.key2row[word.orth] else: indices[i] = 0 word_vectors = doc.vocab.vectors.data[indices] doc_vector = np.mean(word_vectors, axis=0) return doc_vector def _build_network(self, orig_width, hidden_with): with Model.define_operators({">>": chain}): # very simple encoder-decoder model self.encoder = Linear(hidden_with, orig_width) # TODO: removed the zero_init here - is oK? self.model = self.encoder >> Linear(orig_width, hidden_with) self.sgd = create_default_optimizer() def _update(self, vectors): truths = self.model.ops.asarray(vectors) predictions, bp_model = self.model.begin_update( truths, drop=self.DROP ) d_scores, loss = self.distance(predictions, truths) bp_model(d_scores, sgd=self.sgd) return loss / len(vectors)