# cython: infer_types=True, profile=True, binding=True from typing import Callable, Dict, Iterable, List, Optional, Union import srsly from thinc.api import SequenceCategoricalCrossentropy, Model, Config from thinc.types import Floats2d, Ints1d from itertools import islice from ..tokens.doc cimport Doc from ..vocab cimport Vocab from ..morphology cimport Morphology from ..parts_of_speech import IDS as POS_IDS from ..symbols import POS from ..language import Language from ..errors import Errors from .pipe import deserialize_config from .tagger import ActivationsT, Tagger from .. import util from ..scorer import Scorer from ..training import validate_examples, validate_get_examples from ..util import registry # See #9050 BACKWARD_OVERWRITE = True BACKWARD_EXTEND = False default_model_config = """ [model] @architectures = "spacy.Tagger.v2" [model.tok2vec] @architectures = "spacy.Tok2Vec.v2" [model.tok2vec.embed] @architectures = "spacy.CharacterEmbed.v2" width = 128 rows = 7000 nM = 64 nC = 8 include_static_vectors = false [model.tok2vec.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 128 depth = 4 window_size = 1 maxout_pieces = 3 """ DEFAULT_MORPH_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "morphologizer", assigns=["token.morph", "token.pos"], default_config={ "model": DEFAULT_MORPH_MODEL, "overwrite": True, "extend": False, "scorer": {"@scorers": "spacy.morphologizer_scorer.v1"}, "store_activations": False }, default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5, "morph_per_feat": None}, ) def make_morphologizer( nlp: Language, model: Model, name: str, overwrite: bool, extend: bool, scorer: Optional[Callable], store_activations: bool, ): return Morphologizer(nlp.vocab, model, name, overwrite=overwrite, extend=extend, scorer=scorer, store_activations=store_activations) def morphologizer_score(examples, **kwargs): def morph_key_getter(token, attr): return getattr(token, attr).key results = {} results.update(Scorer.score_token_attr(examples, "pos", **kwargs)) results.update(Scorer.score_token_attr(examples, "morph", getter=morph_key_getter, **kwargs)) results.update(Scorer.score_token_attr_per_feat(examples, "morph", getter=morph_key_getter, **kwargs)) return results @registry.scorers("spacy.morphologizer_scorer.v1") def make_morphologizer_scorer(): return morphologizer_score class Morphologizer(Tagger): POS_FEAT = "POS" def __init__( self, vocab: Vocab, model: Model, name: str = "morphologizer", *, overwrite: bool = BACKWARD_OVERWRITE, extend: bool = BACKWARD_EXTEND, scorer: Optional[Callable] = morphologizer_score, store_activations: bool = False, ): """Initialize a morphologizer. vocab (Vocab): The shared vocabulary. model (thinc.api.Model): The Thinc Model powering the pipeline component. name (str): The component instance name, used to add entries to the losses during training. scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_token_attr for the attributes "pos" and "morph" and Scorer.score_token_attr_per_feat for the attribute "morph". store_activations (bool): store model activations in Doc when annotating. DOCS: https://spacy.io/api/morphologizer#init """ self.vocab = vocab self.model = model self.name = name self._rehearsal_model = None # to be able to set annotations without string operations on labels, # store mappings from morph+POS labels to token-level annotations: # 1) labels_morph stores a mapping from morph+POS->morph # 2) labels_pos stores a mapping from morph+POS->POS cfg = { "labels_morph": {}, "labels_pos": {}, "overwrite": overwrite, "extend": extend, } self.cfg = dict(sorted(cfg.items())) self.scorer = scorer self.store_activations = store_activations @property def labels(self): """RETURNS (Iterable[str]): The labels currently added to the component.""" return self.cfg["labels_morph"].keys() @property def label_data(self) -> Dict[str, Dict[str, Union[str, float, int, None]]]: """A dictionary with all labels data.""" return {"morph": self.cfg["labels_morph"], "pos": self.cfg["labels_pos"]} def add_label(self, label): """Add a new label to the pipe. label (str): The label to add. RETURNS (int): 0 if label is already present, otherwise 1. DOCS: https://spacy.io/api/morphologizer#add_label """ if not isinstance(label, str): raise ValueError(Errors.E187) if label in self.labels: return 0 self._allow_extra_label() # normalize label norm_label = self.vocab.morphology.normalize_features(label) # extract separate POS and morph tags label_dict = Morphology.feats_to_dict(label, sort_values=False) pos = label_dict.get(self.POS_FEAT, "") if self.POS_FEAT in label_dict: label_dict.pop(self.POS_FEAT) # normalize morph string and add to morphology table norm_morph = self.vocab.strings[self.vocab.morphology.add(label_dict)] # add label mappings if norm_label not in self.cfg["labels_morph"]: self.cfg["labels_morph"][norm_label] = norm_morph self.cfg["labels_pos"][norm_label] = POS_IDS[pos] return 1 def initialize(self, get_examples, *, nlp=None, labels=None): """Initialize the pipe for training, using a representative set of data examples. get_examples (Callable[[], Iterable[Example]]): Function that returns a representative sample of gold-standard Example objects. nlp (Language): The current nlp object the component is part of. DOCS: https://spacy.io/api/morphologizer#initialize """ validate_get_examples(get_examples, "Morphologizer.initialize") util.check_lexeme_norms(self.vocab, "morphologizer") if labels is not None: self.cfg["labels_morph"] = labels["morph"] self.cfg["labels_pos"] = labels["pos"] else: # First, fetch all labels from the data for example in get_examples(): for i, token in enumerate(example.reference): pos = token.pos_ # if both are unset, annotation is missing, so do not add # an empty label if pos == "" and not token.has_morph(): continue morph = str(token.morph) # create and add the combined morph+POS label morph_dict = Morphology.feats_to_dict(morph, sort_values=False) if pos: morph_dict[self.POS_FEAT] = pos norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)] # add label->morph and label->POS mappings if norm_label not in self.cfg["labels_morph"]: self.cfg["labels_morph"][norm_label] = morph self.cfg["labels_pos"][norm_label] = POS_IDS[pos] if len(self.labels) < 1: raise ValueError(Errors.E143.format(name=self.name)) doc_sample = [] label_sample = [] for example in islice(get_examples(), 10): gold_array = [] for i, token in enumerate(example.reference): pos = token.pos_ morph = str(token.morph) morph_dict = Morphology.feats_to_dict(morph, sort_values=False) if pos: morph_dict[self.POS_FEAT] = pos norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)] gold_array.append([1.0 if label == norm_label else 0.0 for label in self.labels]) doc_sample.append(example.x) label_sample.append(self.model.ops.asarray(gold_array, dtype="float32")) assert len(doc_sample) > 0, Errors.E923.format(name=self.name) assert len(label_sample) > 0, Errors.E923.format(name=self.name) self.model.initialize(X=doc_sample, Y=label_sample) def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT): """Modify a batch of documents, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. activations (ActivationsT): The activations used for setting annotations, produced by Morphologizer.predict. DOCS: https://spacy.io/api/morphologizer#set_annotations """ batch_tag_ids = activations["guesses"] if isinstance(docs, Doc): docs = [docs] cdef Doc doc cdef Vocab vocab = self.vocab cdef bint overwrite = self.cfg["overwrite"] cdef bint extend = self.cfg["extend"] # We require random access for the upcoming ops, so we need # to allocate a compatible container out of the iterable. labels = tuple(self.labels) for i, doc in enumerate(docs): if self.store_activations: doc.activations[self.name] = {} for act_name, acts in activations.items(): doc.activations[self.name][act_name] = acts[i] doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, "get"): doc_tag_ids = doc_tag_ids.get() for j, tag_id in enumerate(doc_tag_ids): morph = labels[int(tag_id)] # set morph if doc.c[j].morph == 0 or overwrite or extend: if overwrite and extend: # morphologizer morph overwrites any existing features # while extending extended_morph = Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph], sort_values=False) extended_morph.update(Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0), sort_values=False)) doc.c[j].morph = self.vocab.morphology.add(extended_morph) elif extend: # existing features are preserved and any new features # are added extended_morph = Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0), sort_values=False) extended_morph.update(Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph], sort_values=False)) doc.c[j].morph = self.vocab.morphology.add(extended_morph) else: # clobber doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels_morph"].get(morph, 0)) # set POS if doc.c[j].pos == 0 or overwrite: doc.c[j].pos = self.cfg["labels_pos"].get(morph, 0) def get_loss(self, examples, scores): """Find the loss and gradient of loss for the batch of documents and their predicted scores. examples (Iterable[Examples]): The batch of examples. scores: Scores representing the model's predictions. RETURNS (Tuple[float, float]): The loss and the gradient. DOCS: https://spacy.io/api/morphologizer#get_loss """ validate_examples(examples, "Morphologizer.get_loss") loss_func = SequenceCategoricalCrossentropy(names=tuple(self.labels), normalize=False) truths = [] for eg in examples: eg_truths = [] pos_tags = eg.get_aligned("POS", as_string=True) morphs = eg.get_aligned("MORPH", as_string=True) for i in range(len(morphs)): pos = pos_tags[i] morph = morphs[i] # POS may align (same value for multiple tokens) when morph # doesn't, so if either is misaligned (None), treat the # annotation as missing so that truths doesn't end up with an # unknown morph+POS combination if pos is None or morph is None: label = None # If both are unset, the annotation is missing (empty morph # converted from int is "_" rather than "") elif pos == "" and morph == "": label = None # Otherwise, generate the combined label else: label_dict = Morphology.feats_to_dict(morph, sort_values=False) if pos: label_dict[self.POS_FEAT] = pos label = self.vocab.strings[self.vocab.morphology.add(label_dict)] # As a fail-safe, skip any unrecognized labels if label not in self.labels: label = None eg_truths.append(label) truths.append(eg_truths) d_scores, loss = loss_func(scores, truths) if self.model.ops.xp.isnan(loss): raise ValueError(Errors.E910.format(name=self.name)) return float(loss), d_scores