//- 💫 DOCS > USAGE > FACTS & FIGURES > BENCHMARKS > MODEL COMPARISON p | In this section, we provide benchmark accuracies for the pre-trained | model pipelines we distribute with spaCy. Evaluations are conducted | end-to-end from raw text, with no "gold standard" pre-processing, over | text from a mix of genres where possible. For are more detailed | comparison of the available models, see the new | #[+a("/models/comparison") model comparison tool]. +aside("Methodology") | The evaluation was conducted on raw text with no gold standard | information. The parser, tagger and entity recognizer were trained on the | #[+a("https://www.gabormelli.com/RKB/OntoNotes_Corpus") OntoNotes 5] | corpus, the word vectors on #[+a("http://commoncrawl.org") Common Crawl]. +h(4, "benchmarks-models-english") English +table(["Model", "spaCy", "Type", "UAS", "NER F", "POS", "WPS", "Size"]) +row +cell #[+a("/models/en#en_core_web_sm") #[code en_core_web_sm]] 2.0.0 each data in ["2.x", "neural"] +cell("num")=data +cell("num") 91.7 +cell("num") 85.3 +cell("num") 97.0 +cell("num") 10.1k +cell("num") #[strong 35MB] +row +cell #[+a("/models/en#en_core_web_lg") #[code en_core_web_lg]] 2.0.0 each data in ["2.x", "neural"] +cell("num")=data +cell("num") #[strong 91.9] +cell("num") #[strong 85.9] +cell("num") #[strong 97.2] +cell("num") 10.0k +cell("num") 812MB +row("divider") +cell #[code en_core_web_sm] 1.2.0 each data in ["1.x", "linear", 86.6, 78.5, 96.6] +cell("num")=data +cell("num") #[strong 25.7k] +cell("num") 50MB +row +cell #[code en_core_web_md] 1.2.1 each data in ["1.x", "linear", 90.6, 81.4, 96.7, "18.8k", "1GB"] +cell("num")=data +h(4, "benchmarks-models-spanish") Spanish +aside("Evaluation note") | The NER accuracy refers to the "silver standard" annotations in the | WikiNER corpus. Accuracy on these annotations tends to be higher than | correct human annotations. +table(["Model", "spaCy", "Type", "UAS", "NER F", "POS", "WPS", "Size"]) +row +cell #[+a("/models/es#es_core_news_sm") #[code es_core_news_sm]] 2.0.0 +cell("num") 2.x +cell("num") neural +cell("num") 89.8 +cell("num") 88.7 +cell("num") #[strong 96.9] +cell("num") #[em n/a] +cell("num") #[strong 35MB] +row +cell #[+a("/models/es#es_core_news_md") #[code es_core_news_md]] 2.0.0 +cell("num") 2.x +cell("num") neural +cell("num") #[strong 90.2] +cell("num") 89.0 +cell("num") 97.8 +cell("num") #[em n/a] +cell("num") 93MB +row("divider") +cell #[code es_core_web_md] 1.1.0 each data in ["1.x", "linear", 87.5] +cell("num")=data +cell("num") #[strong 94.2] +cell("num") 96.7 +cell("num") #[em n/a] +cell("num") 377MB