#!/usr/bin/env python from __future__ import division from __future__ import unicode_literals from __future__ import print_function import os from os import path import shutil import codecs import random import plac import re import spacy.util from spacy.en import English from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir from spacy.syntax.util import Config from spacy.gold import read_json_file from spacy.gold import GoldParse from spacy.scorer import Scorer def _corrupt(c, noise_level): if random.random() >= noise_level: return c elif c == ' ': return '\n' elif c == '\n': return ' ' elif c in ['.', "'", "!", "?"]: return '' else: return c.lower() def add_noise(orig, noise_level): if random.random() >= noise_level: return orig elif type(orig) == list: corrupted = [_corrupt(word, noise_level) for word in orig] corrupted = [w for w in corrupted if w] return corrupted else: return ''.join(_corrupt(c, noise_level) for c in orig) def score_model(scorer, nlp, raw_text, annot_tuples, verbose=False): if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) else: tokens = nlp.tokenizer(raw_text) nlp.tagger(tokens) nlp.entity(tokens) nlp.parser(tokens) gold = GoldParse(tokens, annot_tuples) scorer.score(tokens, gold, verbose=verbose) def _merge_sents(sents): m_deps = [[], [], [], [], [], []] m_brackets = [] i = 0 for (ids, words, tags, heads, labels, ner), brackets in sents: m_deps[0].extend(id_ + i for id_ in ids) m_deps[1].extend(words) m_deps[2].extend(tags) m_deps[3].extend(head + i for head in heads) m_deps[4].extend(labels) m_deps[5].extend(ner) m_brackets.extend((b['first'] + i, b['last'] + i, b['label']) for b in brackets) i += len(ids) return [(m_deps, m_brackets)] def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', seed=0, gold_preproc=False, n_sents=0, corruption_level=0, beam_width=1, verbose=False, use_orig_arc_eager=False): dep_model_dir = path.join(model_dir, 'deps') pos_model_dir = path.join(model_dir, 'pos') ner_model_dir = path.join(model_dir, 'ner') if path.exists(dep_model_dir): shutil.rmtree(dep_model_dir) if path.exists(pos_model_dir): shutil.rmtree(pos_model_dir) if path.exists(ner_model_dir): shutil.rmtree(ner_model_dir) os.mkdir(dep_model_dir) os.mkdir(pos_model_dir) os.mkdir(ner_model_dir) setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir) Config.write(dep_model_dir, 'config', features=feat_set, seed=seed, labels=Language.ParserTransitionSystem.get_labels(gold_tuples), beam_width=beam_width) Config.write(ner_model_dir, 'config', features='ner', seed=seed, labels=Language.EntityTransitionSystem.get_labels(gold_tuples), beam_width=0) if n_sents > 0: gold_tuples = gold_tuples[:n_sents] nlp = Language(data_dir=model_dir) print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %") for itn in range(n_iter): scorer = Scorer() loss = 0 for raw_text, sents in gold_tuples: if gold_preproc: raw_text = None else: sents = _merge_sents(sents) for annot_tuples, ctnt in sents: if len(annot_tuples[1]) == 1: continue score_model(scorer, nlp, raw_text, annot_tuples, verbose=verbose if itn >= 2 else False) if raw_text is None: words = add_noise(annot_tuples[1], corruption_level) tokens = nlp.tokenizer.tokens_from_list(words) else: raw_text = add_noise(raw_text, corruption_level) tokens = nlp.tokenizer(raw_text) nlp.tagger(tokens) gold = GoldParse(tokens, annot_tuples, make_projective=True) if not gold.is_projective: raise Exception( "Non-projective sentence in training, after we should " "have enforced projectivity: %s" % annot_tuples ) loss += nlp.parser.train(tokens, gold) nlp.entity.train(tokens, gold) nlp.tagger.train(tokens, gold.tags) random.shuffle(gold_tuples) print('%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f, scorer.tags_acc, scorer.token_acc)) nlp.end_training() def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=False, beam_width=None): nlp = Language(data_dir=model_dir) if beam_width is not None: nlp.parser.cfg.beam_width = beam_width scorer = Scorer() for raw_text, sents in gold_tuples: if gold_preproc: raw_text = None else: sents = _merge_sents(sents) for annot_tuples, brackets in sents: if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) nlp.tagger(tokens) nlp.entity(tokens) nlp.parser(tokens) else: tokens = nlp(raw_text, merge_mwes=False) gold = GoldParse(tokens, annot_tuples) scorer.score(tokens, gold, verbose=verbose) return scorer def write_parses(Language, dev_loc, model_dir, out_loc, beam_width=None): nlp = Language(data_dir=model_dir) if beam_width is not None: nlp.parser.cfg.beam_width = beam_width gold_tuples = read_json_file(dev_loc) scorer = Scorer() out_file = codecs.open(out_loc, 'w', 'utf8') for raw_text, sents in gold_tuples: sents = _merge_sents(sents) for annot_tuples, brackets in sents: if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) nlp.tagger(tokens) nlp.entity(tokens) nlp.parser(tokens) else: tokens = nlp(raw_text, merge_mwes=False) gold = GoldParse(tokens, annot_tuples) scorer.score(tokens, gold, verbose=False) for t in tokens: out_file.write( '%s\t%s\t%s\t%s\n' % (t.orth_, t.tag_, t.head.orth_, t.dep_) ) return scorer @plac.annotations( train_loc=("Location of training file or directory"), dev_loc=("Location of development file or directory"), model_dir=("Location of output model directory",), eval_only=("Skip training, and only evaluate", "flag", "e", bool), corruption_level=("Amount of noise to add to training data", "option", "c", float), gold_preproc=("Use gold-standard sentence boundaries in training?", "flag", "g", bool), out_loc=("Out location", "option", "o", str), n_sents=("Number of training sentences", "option", "n", int), n_iter=("Number of training iterations", "option", "i", int), verbose=("Verbose error reporting", "flag", "v", bool), debug=("Debug mode", "flag", "d", bool), ) def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False, debug=False, corruption_level=0.0, gold_preproc=False, eval_only=False): if not eval_only: gold_train = list(read_json_file(train_loc)) train(English, gold_train, model_dir, feat_set='basic' if not debug else 'debug', gold_preproc=gold_preproc, n_sents=n_sents, corruption_level=corruption_level, n_iter=n_iter, verbose=verbose) #if out_loc: # write_parses(English, dev_loc, model_dir, out_loc, beam_width=beam_width) scorer = evaluate(English, list(read_json_file(dev_loc)), model_dir, gold_preproc=gold_preproc, verbose=verbose) print('TOK', scorer.token_acc) print('POS', scorer.tags_acc) print('UAS', scorer.uas) print('LAS', scorer.las) print('NER P', scorer.ents_p) print('NER R', scorer.ents_r) print('NER F', scorer.ents_f) if __name__ == '__main__': plac.call(main)