# coding: utf-8 from __future__ import unicode_literals import os import spacy import datetime from os import listdir from examples.pipeline.wiki_entity_linking import training_set_creator # requires: pip install neuralcoref --no-binary neuralcoref # import neuralcoref def run_el_toy_example(nlp, kb): _prepare_pipeline(nlp, kb) candidates = kb.get_candidates("Bush") print("generating candidates for 'Bush' :") for c in candidates: print(" ", c.prior_prob, c.alias_, "-->", c.entity_ + " (freq=" + str(c.entity_freq) + ")") print() text = "In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, " \ "Douglas reminds us to always bring our towel. " \ "The main character in Doug's novel is the man Arthur Dent, " \ "but Douglas doesn't write about George Washington or Homer Simpson." doc = nlp(text) for ent in doc.ents: print("ent", ent.text, ent.label_, ent.kb_id_) def run_el_dev(nlp, kb, training_dir, limit=None): _prepare_pipeline(nlp, kb) correct_entries_per_article, _ = training_set_creator.read_training_entities(training_output=training_dir, collect_correct=True, collect_incorrect=False) predictions = list() golds = list() cnt = 0 for f in listdir(training_dir): if not limit or cnt < limit: if is_dev(f): article_id = f.replace(".txt", "") if cnt % 500 == 0: print(datetime.datetime.now(), "processed", cnt, "files in the dev dataset") cnt += 1 with open(os.path.join(training_dir, f), mode="r", encoding='utf8') as file: text = file.read() doc = nlp(text) for ent in doc.ents: if ent.label_ == "PERSON": # TODO: expand to other types gold_entity = correct_entries_per_article[article_id].get(ent.text, None) # only evaluating gold entities we know, because the training data is not complete if gold_entity: predictions.append(ent.kb_id_) golds.append(gold_entity) print("Processed", cnt, "dev articles") print() evaluate(predictions, golds) def is_dev(file_name): return file_name.endswith("3.txt") def evaluate(predictions, golds, to_print=True): if len(predictions) != len(golds): raise ValueError("predictions and gold entities should have the same length") tp = 0 fp = 0 fn = 0 for pred, gold in zip(predictions, golds): is_correct = pred == gold if not pred: fn += 1 elif is_correct: tp += 1 else: fp += 1 if to_print: print("Evaluating", len(golds), "entities") print("tp", tp) print("fp", fp) print("fn", fn) precision = 100 * tp / (tp + fp + 0.0000001) recall = 100 * tp / (tp + fn + 0.0000001) fscore = 2 * recall * precision / (recall + precision + 0.0000001) if to_print: print("precision", round(precision, 1), "%") print("recall", round(recall, 1), "%") print("Fscore", round(fscore, 1), "%") return precision, recall, fscore def _prepare_pipeline(nlp, kb): # TODO: the vocab objects are now different between nlp and kb - will be fixed when KB is written as part of NLP IO el_pipe = nlp.create_pipe(name='entity_linker', config={"kb": kb}) nlp.add_pipe(el_pipe, last=True) # TODO def add_coref(): """ Add coreference resolution to our model """ nlp = spacy.load('en_core_web_sm') # nlp = spacy.load('en') # TODO: this doesn't work yet # neuralcoref.add_to_pipe(nlp) print("done adding to pipe") doc = nlp(u'My sister has a dog. She loves him.') print("done doc") print(doc._.has_coref) print(doc._.coref_clusters) # TODO def _run_ner_depr(nlp, clean_text, article_dict): doc = nlp(clean_text) for ent in doc.ents: if ent.label_ == "PERSON": # TODO: expand to non-persons ent_id = article_dict.get(ent.text) if ent_id: print(" -", ent.text, ent.label_, ent_id) else: print(" -", ent.text, ent.label_, '???') # TODO: investigate these cases