"""
Fill an array, context, with every _atomic_ value our features reference.
We then write the _actual features_ as tuples of the atoms. The machinery
that translates from the tuples to feature-extractors (which pick the values
out of "context") is in features/extractor.pyx

The atomic feature names are listed in a big enum, so that the feature tuples
can refer to them.
"""
from libc.string cimport memset

from itertools import combinations

from ..structs cimport TokenC

from .stateclass cimport StateClass

from cymem.cymem cimport Pool


cdef inline void fill_token(atom_t* context, const TokenC* token) nogil:
    if token is NULL:
        context[0] = 0
        context[1] = 0
        context[2] = 0
        context[3] = 0
        context[4] = 0
        context[5] = 0
        context[6] = 0
        context[7] = 0
        context[8] = 0
        context[9] = 0
        context[10] = 0
        context[11] = 0
        context[12] = 0
    else:
        context[0] = token.lex.orth
        context[1] = token.lemma
        context[2] = token.tag
        context[3] = token.lex.cluster
        # We've read in the string little-endian, so now we can take & (2**n)-1
        # to get the first n bits of the cluster.
        # e.g. s = "1110010101"
        # s = ''.join(reversed(s))
        # first_4_bits = int(s, 2)
        # print first_4_bits
        # 5
        # print "{0:b}".format(prefix).ljust(4, '0')
        # 1110
        # What we're doing here is picking a number where all bits are 1, e.g.
        # 15 is 1111, 63 is 111111 and doing bitwise AND, so getting all bits in
        # the source that are set to 1.
        context[4] = token.lex.cluster & 15
        context[5] = token.lex.cluster & 63
        context[6] = token.dep if token.head != 0 else 0
        context[7] = token.lex.prefix
        context[8] = token.lex.suffix
        context[9] = token.lex.shape
        context[10] = token.ent_iob
        context[11] = token.ent_type

cdef int fill_context(atom_t* ctxt, StateClass st) nogil:
    # Take care to fill every element of context!
    # We could memset, but this makes it very easy to have broken features that
    # make almost no impact on accuracy. If instead they're unset, the impact
    # tends to be dramatic, so we get an obvious regression to fix...
    fill_token(&ctxt[S2w], st.S_(2))
    fill_token(&ctxt[S1w], st.S_(1))
    fill_token(&ctxt[S1rw], st.R_(st.S(1), 1))
    fill_token(&ctxt[S0lw], st.L_(st.S(0), 1))
    fill_token(&ctxt[S0l2w], st.L_(st.S(0), 2))
    fill_token(&ctxt[S0w], st.S_(0))
    fill_token(&ctxt[S0r2w], st.R_(st.S(0), 2))
    fill_token(&ctxt[S0rw], st.R_(st.S(0), 1))
    fill_token(&ctxt[N0lw], st.L_(st.B(0), 1))
    fill_token(&ctxt[N0l2w], st.L_(st.B(0), 2))
    fill_token(&ctxt[N0w], st.B_(0))
    fill_token(&ctxt[N1w], st.B_(1))
    fill_token(&ctxt[N2w], st.B_(2))
    fill_token(&ctxt[P1w], st.safe_get(st.B(0)-1))
    fill_token(&ctxt[P2w], st.safe_get(st.B(0)-2))

    fill_token(&ctxt[E0w], st.E_(0))
    fill_token(&ctxt[E1w], st.E_(1))

    if st.stack_depth() >= 1 and not st.eol():
        ctxt[dist] = min_(st.B(0) - st.E(0), 5)
    else:
        ctxt[dist] = 0
    ctxt[N0lv] = min_(st.n_L(st.B(0)), 5)
    ctxt[S0lv] = min_(st.n_L(st.S(0)), 5)
    ctxt[S0rv] = min_(st.n_R(st.S(0)), 5)
    ctxt[S1lv] = min_(st.n_L(st.S(1)), 5)
    ctxt[S1rv] = min_(st.n_R(st.S(1)), 5)

    ctxt[S0_has_head] = 0
    ctxt[S1_has_head] = 0
    ctxt[S2_has_head] = 0
    if st.stack_depth() >= 1:
        ctxt[S0_has_head] = st.has_head(st.S(0)) + 1
        if st.stack_depth() >= 2:
            ctxt[S1_has_head] = st.has_head(st.S(1)) + 1
            if st.stack_depth() >= 3:
                ctxt[S2_has_head] = st.has_head(st.S(2)) + 1


cdef inline int min_(int a, int b) nogil:
    return a if a > b else b


ner = (
    (N0W,),
    (P1W,),
    (N1W,),
    (P2W,),
    (N2W,),

    (P1W, N0W,),
    (N0W, N1W),

    (N0_prefix,),
    (N0_suffix,),

    (P1_shape,),
    (N0_shape,),
    (N1_shape,),
    (P1_shape, N0_shape,),
    (N0_shape, P1_shape,),
    (P1_shape, N0_shape, N1_shape),
    (N2_shape,),
    (P2_shape,),

    #(P2_norm, P1_norm, W_norm),
    #(P1_norm, W_norm, N1_norm),
    #(W_norm, N1_norm, N2_norm)

    (P2p,),
    (P1p,),
    (N0p,),
    (N1p,),
    (N2p,),

    (P1p, N0p),
    (N0p, N1p),
    (P2p, P1p, N0p),
    (P1p, N0p, N1p),
    (N0p, N1p, N2p),

    (P2c,),
    (P1c,),
    (N0c,),
    (N1c,),
    (N2c,),

    (P1c, N0c),
    (N0c, N1c),

    (E0W,),
    (E0c,),
    (E0p,),

    (E0W, N0W),
    (E0c, N0W),
    (E0p, N0W),

    (E0p, P1p, N0p),
    (E0c, P1c, N0c),

    (E0w, P1c),
    (E0p, P1p),
    (E0c, P1c),
    (E0p, E1p),
    (E0c, P1p),

    (E1W,),
    (E1c,),
    (E1p,),

    (E0W, E1W),
    (E0W, E1p,),
    (E0p, E1W,),
    (E0p, E1W),

    (P1_ne_iob,),
    (P1_ne_iob, P1_ne_type),
    (N0w, P1_ne_iob, P1_ne_type),

    (N0_shape,),
    (N1_shape,),
    (N2_shape,),
    (P1_shape,),
    (P2_shape,),

    (N0_prefix,),
    (N0_suffix,),

    (P1_ne_iob,),
    (P2_ne_iob,),
    (P1_ne_iob, P2_ne_iob),
    (P1_ne_iob, P1_ne_type),
    (P2_ne_iob, P2_ne_type),
    (N0w, P1_ne_iob, P1_ne_type),

    (N0w, N1w),
)


unigrams = (
    (S2W, S2p),
    (S2c6, S2p),

    (S1W, S1p),
    (S1c6, S1p),

    (S0W, S0p),
    (S0c6, S0p),

    (N0W, N0p),
    (N0p,),
    (N0c,),
    (N0c6, N0p),
    (N0L,),

    (N1W, N1p),
    (N1c6, N1p),

    (N2W, N2p),
    (N2c6, N2p),

    (S0r2W, S0r2p),
    (S0r2c6, S0r2p),
    (S0r2L,),

    (S0rW, S0rp),
    (S0rc6, S0rp),
    (S0rL,),

    (S0l2W, S0l2p),
    (S0l2c6, S0l2p),
    (S0l2L,),

    (S0lW, S0lp),
    (S0lc6, S0lp),
    (S0lL,),

    (N0l2W, N0l2p),
    (N0l2c6, N0l2p),
    (N0l2L,),

    (N0lW, N0lp),
    (N0lc6, N0lp),
    (N0lL,),
)


s0_n0 = (
    (S0W, S0p, N0W, N0p),
    (S0c, S0p, N0c, N0p),
    (S0c6, S0p, N0c6, N0p),
    (S0c4, S0p, N0c4, N0p),
    (S0p, N0p),
    (S0W, N0p),
    (S0p, N0W),
    (S0W, N0c),
    (S0c, N0W),
    (S0p, N0c),
    (S0c, N0p),
    (S0W, S0rp, N0p),
    (S0p, S0rp, N0p),
    (S0p, N0lp, N0W),
    (S0p, N0lp, N0p),
    (S0L, N0p),
    (S0p, S0rL, N0p),
    (S0p, N0lL, N0p),
    (S0p, S0rv, N0p),
    (S0p, N0lv, N0p),
    (S0c6, S0rL, S0r2L, N0p),
    (S0p, N0lL, N0l2L, N0p),
)


s1_s0 = (
    (S1p, S0p),
    (S1p, S0p, S0_has_head),
    (S1W, S0p),
    (S1W, S0p, S0_has_head),
    (S1c, S0p),
    (S1c, S0p, S0_has_head),
    (S1p, S1rL, S0p),
    (S1p, S1rL, S0p, S0_has_head),
    (S1p, S0lL, S0p),
    (S1p, S0lL, S0p, S0_has_head),
    (S1p, S0lL, S0l2L, S0p),
    (S1p, S0lL, S0l2L, S0p, S0_has_head),
    (S1L, S0L, S0W),
    (S1L, S0L, S0p),
    (S1p, S1L, S0L, S0p),
    (S1p, S0p),
)


s1_n0 = (
    (S1p, N0p),
    (S1c, N0c),
    (S1c, N0p),
    (S1p, N0c),
    (S1W, S1p, N0p),
    (S1p, N0W, N0p),
    (S1c6, S1p, N0c6, N0p),
    (S1L, N0p),
    (S1p, S1rL, N0p),
    (S1p, S1rp, N0p),
)


s0_n1 = (
    (S0p, N1p),
    (S0c, N1c),
    (S0c, N1p),
    (S0p, N1c),
    (S0W, S0p, N1p),
    (S0p, N1W, N1p),
    (S0c6, S0p, N1c6, N1p),
    (S0L, N1p),
    (S0p, S0rL, N1p),
)


n0_n1 = (
    (N0W, N0p, N1W, N1p),
    (N0W, N0p, N1p),
    (N0p, N1W, N1p),
    (N0c, N0p, N1c, N1p),
    (N0c6, N0p, N1c6, N1p),
    (N0c, N1c),
    (N0p, N1c),
)

tree_shape = (
    (dist,),
    (S0p, S0_has_head, S1_has_head, S2_has_head),
    (S0p, S0lv, S0rv),
    (N0p, N0lv),
)

trigrams = (
    (N0p, N1p, N2p),
    (S0p, S0lp, S0l2p),
    (S0p, S0rp, S0r2p),
    (S0p, S1p, S2p),
    (S1p, S0p, N0p),
    (S0p, S0lp, N0p),
    (S0p, N0p, N0lp),
    (N0p, N0lp, N0l2p),

    (S0W, S0p, S0rL, S0r2L),
    (S0p, S0rL, S0r2L),

    (S0W, S0p, S0lL, S0l2L),
    (S0p, S0lL, S0l2L),

    (N0W, N0p, N0lL, N0l2L),
    (N0p, N0lL, N0l2L),
)


words = (
    S2w,
    S1w,
    S1rw,
    S0lw,
    S0l2w,
    S0w,
    S0r2w,
    S0rw,
    N0lw,
    N0l2w,
    N0w,
    N1w,
    N2w,
    P1w,
    P2w
)

tags = (
    S2p,
    S1p,
    S1rp,
    S0lp,
    S0l2p,
    S0p,
    S0r2p,
    S0rp,
    N0lp,
    N0l2p,
    N0p,
    N1p,
    N2p,
    P1p,
    P2p
)

labels = (
    S2L,
    S1L,
    S1rL,
    S0lL,
    S0l2L,
    S0L,
    S0r2L,
    S0rL,
    N0lL,
    N0l2L,
    N0L,
    N1L,
    N2L,
    P1L,
    P2L
)