--- title: Sentencizer tag: class source: spacy/pipeline/pipes.pyx --- A simple pipeline component, to allow custom sentence boundary detection logic that doesn't require the dependency parse. By default, sentence segmentation is performed by the [`DependencyParser`](/api/dependencyparser), so the `Sentencizer` lets you implement a simpler, rule-based strategy that doesn't require a statistical model to be loaded. The component is also available via the string name `"sentencizer"`. After initialization, it is typically added to the processing pipeline using [`nlp.add_pipe`](/api/language#add_pipe). <Infobox title="Important note" variant="warning"> Compared to the previous `SentenceSegmenter` class, the `Sentencizer` component doesn't add a hook to `doc.user_hooks["sents"]`. Instead, it iterates over the tokens in the `Doc` and sets the `Token.is_sent_start` property. The `SentenceSegmenter` is still available if you import it directly: ```python from spacy.pipeline import SentenceSegmenter ``` </Infobox> ## Sentencizer.\_\_init\_\_ {#init tag="method"} Initialize the sentencizer. > #### Example > > ```python > # Construction via create_pipe > sentencizer = nlp.create_pipe("sentencizer") > > # Construction from class > from spacy.pipeline import Sentencizer > sentencizer = Sentencizer() > ``` | Name | Type | Description | | ------------- | ------------- | ------------------------------------------------------------------------------------------------------ | | `punct_chars` | list | Optional custom list of punctuation characters that mark sentence ends. Defaults to `[".", "!", "?"].` | | **RETURNS** | `Sentencizer` | The newly constructed object. | ## Sentencizer.\_\_call\_\_ {#call tag="method"} Apply the sentencizer on a `Doc`. Typically, this happens automatically after the component has been added to the pipeline using [`nlp.add_pipe`](/api/language#add_pipe). > #### Example > > ```python > from spacy.lang.en import English > > nlp = English() > sentencizer = nlp.create_pipe("sentencizer") > nlp.add_pipe(sentencizer) > doc = nlp(u"This is a sentence. This is another sentence.") > assert list(doc.sents) == 2 > ``` | Name | Type | Description | | ----------- | ----- | ------------------------------------------------------------ | | `doc` | `Doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. | | **RETURNS** | `Doc` | The modified `Doc` with added sentence boundaries. | ## Sentencizer.to_disk {#to_disk tag="method"} Save the sentencizer settings (punctuation characters) a directory. Will create a file `sentencizer.json`. This also happens automatically when you save an `nlp` object with a sentencizer added to its pipeline. > #### Example > > ```python > sentencizer = Sentencizer(punct_chars=[".", "?", "!", "。"]) > sentencizer.to_disk("/path/to/sentencizer.jsonl") > ``` | Name | Type | Description | | ------ | ---------------- | ---------------------------------------------------------------------------------------------------------------- | | `path` | unicode / `Path` | A path to a file, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. | ## Sentencizer.from_disk {#from_disk tag="method"} Load the sentencizer settings from a file. Expects a JSON file. This also happens automatically when you load an `nlp` object or model with a sentencizer added to its pipeline. > #### Example > > ```python > sentencizer = Sentencizer() > sentencizer.from_disk("/path/to/sentencizer.json") > ``` | Name | Type | Description | | ----------- | ---------------- | -------------------------------------------------------------------------- | | `path` | unicode / `Path` | A path to a JSON file. Paths may be either strings or `Path`-like objects. | | **RETURNS** | `Sentencizer` | The modified `Sentencizer` object. | ## Sentencizer.to_bytes {#to_bytes tag="method"} Serialize the sentencizer settings to a bytestring. > #### Example > > ```python > sentencizer = Sentencizer(punct_chars=[".", "?", "!", "。"]) > sentencizer_bytes = sentencizer.to_bytes() > ``` | Name | Type | Description | | ----------- | ----- | -------------------- | | **RETURNS** | bytes | The serialized data. | ## Sentencizer.from_bytes {#from_bytes tag="method"} Load the pipe from a bytestring. Modifies the object in place and returns it. > #### Example > > ```python > sentencizer_bytes = sentencizer.to_bytes() > sentencizer = Sentencizer() > sentencizer.from_bytes(sentencizer_bytes) > ``` | Name | Type | Description | | ------------ | ------------- | ---------------------------------- | | `bytes_data` | bytes | The bytestring to load. | | **RETURNS** | `Sentencizer` | The modified `Sentencizer` object. |