#!/usr/bin/env python # coding: utf8 """Load vectors for a language trained using fastText https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md Compatible with: spaCy v2.0.0+ """ from __future__ import unicode_literals import plac import numpy import spacy from spacy.language import Language @plac.annotations( vectors_loc=("Path to vectors", "positional", None, str), lang=("Optional language ID. If not set, blank Language() will be used.", "positional", None, str)) def main(vectors_loc, lang=None): if lang is None: nlp = Language() else: # create empty language class – this is required if you're planning to # save the model to disk and load it back later (models always need a # "lang" setting). Use 'xx' for blank multi-language class. nlp = spacy.blank(lang) with open(vectors_loc, 'rb') as file_: header = file_.readline() nr_row, nr_dim = header.split() nlp.vocab.reset_vectors(width=int(nr_dim)) for line in file_: line = line.rstrip().decode('utf8') pieces = line.rsplit(' ', int(nr_dim)) word = pieces[0] vector = numpy.asarray([float(v) for v in pieces[1:]], dtype='f') nlp.vocab.set_vector(word, vector) # add the vectors to the vocab # test the vectors and similarity text = 'class colspan' doc = nlp(text) print(text, doc[0].similarity(doc[1])) if __name__ == '__main__': plac.call(main)