from typing import Optional, Callable
from thinc.api import Model
from .lemmatizer import MacedonianLemmatizer
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .lex_attrs import LEX_ATTRS
from ..tokenizer_exceptions import BASE_EXCEPTIONS

from ...language import Language, BaseDefaults
from ...attrs import LANG
from ...util import update_exc
from ...lookups import Lookups


class MacedonianDefaults(BaseDefaults):
    lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
    lex_attr_getters[LANG] = lambda text: "mk"

    # Optional: replace flags with custom functions, e.g. like_num()
    lex_attr_getters.update(LEX_ATTRS)

    # Merge base exceptions and custom tokenizer exceptions
    tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
    stop_words = STOP_WORDS

    @classmethod
    def create_lemmatizer(cls, nlp=None, lookups=None):
        if lookups is None:
            lookups = Lookups()
        return MacedonianLemmatizer(lookups)


class Macedonian(Language):
    lang = "mk"
    Defaults = MacedonianDefaults


@Macedonian.factory(
    "lemmatizer",
    assigns=["token.lemma"],
    default_config={
        "model": None,
        "mode": "rule",
        "overwrite": False,
        "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
    },
    default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
    nlp: Language,
    model: Optional[Model],
    name: str,
    mode: str,
    overwrite: bool,
    scorer: Optional[Callable],
):
    return MacedonianLemmatizer(
        nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
    )


__all__ = ["Macedonian"]