from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple

from thinc.api import Config, Model, Optimizer, set_dropout_rate
from thinc.types import Floats2d

from ..errors import Errors
from ..language import Language
from ..scorer import Scorer
from ..tokens import Doc, Span
from ..training import Example
from ..util import registry
from .spancat import DEFAULT_SPANS_KEY
from .trainable_pipe import TrainablePipe

span_finder_default_config = """
[model]
@architectures = "spacy.SpanFinder.v1"

[model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO = 2

[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"

[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 96
rows = [5000, 1000, 2500, 1000]
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false

[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 4
"""

DEFAULT_SPAN_FINDER_MODEL = Config().from_str(span_finder_default_config)["model"]


@Language.factory(
    "span_finder",
    assigns=["doc.spans"],
    default_config={
        "threshold": 0.5,
        "model": DEFAULT_SPAN_FINDER_MODEL,
        "spans_key": DEFAULT_SPANS_KEY,
        "max_length": None,
        "min_length": None,
        "scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
    },
    default_score_weights={
        f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
        f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
        f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
    },
)
def make_span_finder(
    nlp: Language,
    name: str,
    model: Model[Iterable[Doc], Floats2d],
    spans_key: str,
    threshold: float,
    max_length: Optional[int],
    min_length: Optional[int],
    scorer: Optional[Callable],
) -> "SpanFinder":
    """Create a SpanFinder component. The component predicts whether a token is
    the start or the end of a potential span.

    model (Model[List[Doc], Floats2d]): A model instance that
        is given a list of documents and predicts a probability for each token.
    spans_key (str): Key of the doc.spans dict to save the spans under. During
        initialization and training, the component will look for spans on the
        reference document under the same key.
    threshold (float): Minimum probability to consider a prediction positive.
    max_length (Optional[int]): Maximum length of the produced spans, defaults
        to None meaning unlimited length.
    min_length (Optional[int]): Minimum length of the produced spans, defaults
        to None meaning shortest span length is 1.
    scorer (Optional[Callable]): The scoring method. Defaults to
        Scorer.score_spans for the Doc.spans[spans_key] with overlapping
        spans allowed.
    """
    return SpanFinder(
        nlp,
        model=model,
        threshold=threshold,
        name=name,
        scorer=scorer,
        max_length=max_length,
        min_length=min_length,
        spans_key=spans_key,
    )


@registry.scorers("spacy.span_finder_scorer.v1")
def make_span_finder_scorer():
    return span_finder_score


def span_finder_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
    kwargs = dict(kwargs)
    attr_prefix = "spans_"
    key = kwargs["spans_key"]
    kwargs.setdefault("attr", f"{attr_prefix}{key}")
    kwargs.setdefault(
        "getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], [])
    )
    kwargs.setdefault("has_annotation", lambda doc: key in doc.spans)
    kwargs.setdefault("allow_overlap", True)
    kwargs.setdefault("labeled", False)
    scores = Scorer.score_spans(examples, **kwargs)
    scores.pop(f"{kwargs['attr']}_per_type", None)
    return scores


def _char_indices(span: Span) -> Tuple[int, int]:
    start = span[0].idx
    end = span[-1].idx + len(span[-1])
    return start, end


class SpanFinder(TrainablePipe):
    """Pipeline that learns span boundaries.

    DOCS: https://spacy.io/api/spanfinder
    """

    def __init__(
        self,
        nlp: Language,
        model: Model[Iterable[Doc], Floats2d],
        name: str = "span_finder",
        *,
        spans_key: str = DEFAULT_SPANS_KEY,
        threshold: float = 0.5,
        max_length: Optional[int] = None,
        min_length: Optional[int] = None,
        scorer: Optional[Callable] = span_finder_score,
    ) -> None:
        """Initialize the span finder.
        model (thinc.api.Model): The Thinc Model powering the pipeline
            component.
        name (str): The component instance name, used to add entries to the
            losses during training.
        threshold (float): Minimum probability to consider a prediction
            positive.
        scorer (Optional[Callable]): The scoring method.
        spans_key (str): Key of the doc.spans dict to save the spans under.
            During initialization and training, the component will look for
            spans on the reference document under the same key.
        max_length (Optional[int]): Maximum length of the produced spans,
            defaults to None meaning unlimited length.
        min_length (Optional[int]): Minimum length of the produced spans,
            defaults to None meaning shortest span length is 1.

        DOCS: https://spacy.io/api/spanfinder#init
        """
        self.vocab = nlp.vocab
        if (max_length is not None and max_length < 1) or (
            min_length is not None and min_length < 1
        ):
            raise ValueError(
                Errors.E1053.format(min_length=min_length, max_length=max_length)
            )
        self.model = model
        self.name = name
        self.scorer = scorer
        self.cfg: Dict[str, Any] = {
            "min_length": min_length,
            "max_length": max_length,
            "threshold": threshold,
            "spans_key": spans_key,
        }

    def predict(self, docs: Iterable[Doc]):
        """Apply the pipeline's model to a batch of docs, without modifying
        them.

        docs (Iterable[Doc]): The documents to predict.
        RETURNS: The models prediction for each document.

        DOCS: https://spacy.io/api/spanfinder#predict
        """
        scores = self.model.predict(docs)
        return scores

    def set_annotations(self, docs: Iterable[Doc], scores: Floats2d) -> None:
        """Modify a batch of Doc objects, using pre-computed scores.
        docs (Iterable[Doc]): The documents to modify.
        scores: The scores to set, produced by SpanFinder predict method.

        DOCS: https://spacy.io/api/spanfinder#set_annotations
        """
        offset = 0
        for i, doc in enumerate(docs):
            doc.spans[self.cfg["spans_key"]] = []
            starts = []
            ends = []
            doc_scores = scores[offset : offset + len(doc)]

            for token, token_score in zip(doc, doc_scores):
                if token_score[0] >= self.cfg["threshold"]:
                    starts.append(token.i)
                if token_score[1] >= self.cfg["threshold"]:
                    ends.append(token.i)

            for start in starts:
                for end in ends:
                    span_length = end + 1 - start
                    if span_length < 1:
                        continue
                    if (
                        self.cfg["min_length"] is None
                        or self.cfg["min_length"] <= span_length
                    ) and (
                        self.cfg["max_length"] is None
                        or span_length <= self.cfg["max_length"]
                    ):
                        doc.spans[self.cfg["spans_key"]].append(doc[start : end + 1])
            offset += len(doc)

    def update(
        self,
        examples: Iterable[Example],
        *,
        drop: float = 0.0,
        sgd: Optional[Optimizer] = None,
        losses: Optional[Dict[str, float]] = None,
    ) -> Dict[str, float]:
        """Learn from a batch of documents and gold-standard information,
        updating the pipe's model. Delegates to predict and get_loss.
        examples (Iterable[Example]): A batch of Example objects.
        drop (float): The dropout rate.
        sgd (Optional[thinc.api.Optimizer]): The optimizer.
        losses (Optional[Dict[str, float]]): Optional record of the loss during
            training. Updated using the component name as the key.
        RETURNS (Dict[str, float]): The updated losses dictionary.

        DOCS: https://spacy.io/api/spanfinder#update
        """
        if losses is None:
            losses = {}
        losses.setdefault(self.name, 0.0)
        predicted = [eg.predicted for eg in examples]
        set_dropout_rate(self.model, drop)
        scores, backprop_scores = self.model.begin_update(predicted)
        loss, d_scores = self.get_loss(examples, scores)
        backprop_scores(d_scores)
        if sgd is not None:
            self.finish_update(sgd)
        losses[self.name] += loss
        return losses

    def get_loss(self, examples, scores) -> Tuple[float, Floats2d]:
        """Find the loss and gradient of loss for the batch of documents and
        their predicted scores.
        examples (Iterable[Examples]): The batch of examples.
        scores: Scores representing the model's predictions.
        RETURNS (Tuple[float, Floats2d]): The loss and the gradient.

        DOCS: https://spacy.io/api/spanfinder#get_loss
        """
        truths, masks = self._get_aligned_truth_scores(examples, self.model.ops)
        d_scores = scores - self.model.ops.asarray2f(truths)
        d_scores *= masks
        loss = float((d_scores**2).sum())
        return loss, d_scores

    def _get_aligned_truth_scores(self, examples, ops) -> Tuple[Floats2d, Floats2d]:
        """Align scores of the predictions to the references for calculating
        the loss.
        """
        truths = []
        masks = []
        for eg in examples:
            if eg.x.text != eg.y.text:
                raise ValueError(Errors.E1054.format(component="span_finder"))
            n_tokens = len(eg.predicted)
            truth = ops.xp.zeros((n_tokens, 2), dtype="float32")
            mask = ops.xp.ones((n_tokens, 2), dtype="float32")
            if self.cfg["spans_key"] in eg.reference.spans:
                for span in eg.reference.spans[self.cfg["spans_key"]]:
                    ref_start_char, ref_end_char = _char_indices(span)
                    pred_span = eg.predicted.char_span(
                        ref_start_char, ref_end_char, alignment_mode="expand"
                    )
                    pred_start_char, pred_end_char = _char_indices(pred_span)
                    start_match = pred_start_char == ref_start_char
                    end_match = pred_end_char == ref_end_char
                    if start_match:
                        truth[pred_span[0].i, 0] = 1
                    else:
                        mask[pred_span[0].i, 0] = 0
                    if end_match:
                        truth[pred_span[-1].i, 1] = 1
                    else:
                        mask[pred_span[-1].i, 1] = 0
            truths.append(truth)
            masks.append(mask)
        truths = ops.xp.concatenate(truths, axis=0)
        masks = ops.xp.concatenate(masks, axis=0)
        return truths, masks

    def initialize(
        self,
        get_examples: Callable[[], Iterable[Example]],
        *,
        nlp: Optional[Language] = None,
    ) -> None:
        """Initialize the pipe for training, using a representative set
        of data examples.
        get_examples (Callable[[], Iterable[Example]]): Function that
            returns a representative sample of gold-standard Example objects.
        nlp (Optional[Language]): The current nlp object the component is part
            of.

        DOCS: https://spacy.io/api/spanfinder#initialize
        """
        subbatch: List[Example] = []

        for eg in get_examples():
            if len(subbatch) < 10:
                subbatch.append(eg)

        if subbatch:
            docs = [eg.reference for eg in subbatch]
            Y, _ = self._get_aligned_truth_scores(subbatch, self.model.ops)
            self.model.initialize(X=docs, Y=Y)
        else:
            self.model.initialize()