# cython: embedsignature=True from __future__ import unicode_literals import re import pathlib from cython.operator cimport dereference as deref from cython.operator cimport preincrement as preinc from cpython cimport Py_UNICODE_ISSPACE try: import ujson as json except ImportError: import json from cymem.cymem cimport Pool from preshed.maps cimport PreshMap from .strings cimport hash_string cimport cython from . import util from .tokens.doc cimport Doc cdef class Tokenizer: @classmethod def load(cls, path, Vocab vocab, rules=None, prefix_search=None, suffix_search=None, infix_finditer=None): '''Load a Tokenizer, reading unsupplied components from the path. Arguments: path pathlib.Path (or string, or Path-like) vocab Vocab rules dict prefix_search callable -- Signature of re.compile(string).search suffix_search callable -- Signature of re.compile(string).search infix_finditer callable -- Signature of re.compile(string).finditer ''' if isinstance(path, basestring): path = pathlib.Path(path) if rules is None: with (path / 'tokenizer' / 'specials.json').open() as file_: rules = json.load(file_) if prefix_search is None: prefix_search = util.read_prefix_regex(path / 'tokenizer' / 'prefix.txt').search if suffix_search is None: suffix_search = util.read_suffix_regex(path / 'tokenizer' / 'suffix.txt').search if infix_finditer is None: infix_finditer = util.read_infix_regex(path / 'tokenizer' / 'infix.txt').finditer return cls(vocab, rules, prefix_search, suffix_search, infix_finditer) def __init__(self, Vocab vocab, rules, prefix_search, suffix_search, infix_finditer): '''Create a Tokenizer, to create Doc objects given unicode text. Arguments: vocab Vocab rules dict prefix_search callable -- Signature of re.compile(string).search suffix_search callable -- Signature of re.compile(string).search infix_finditer callable -- Signature of re.compile(string).finditer ''' self.mem = Pool() self._cache = PreshMap() self._specials = PreshMap() self.prefix_search = prefix_search self.suffix_search = suffix_search self.infix_finditer = infix_finditer self.vocab = vocab self._rules = {} for chunk, substrings in sorted(rules.items()): self.add_special_case(chunk, substrings) def __reduce__(self): args = (self.vocab, self._rules, self._prefix_re, self._suffix_re, self._infix_re) return (self.__class__, args, None, None) cpdef Doc tokens_from_list(self, list strings): cdef Doc tokens = Doc(self.vocab) if sum([len(s) for s in strings]) == 0: return tokens cdef unicode py_string cdef int idx = 0 for i, py_string in enumerate(strings): # Note that we pass tokens.mem here --- the Doc object has ownership tokens.push_back( self.vocab.get(tokens.mem, py_string), True) idx += len(py_string) + 1 return tokens @cython.boundscheck(False) def __call__(self, unicode string): """Tokenize a string. The tokenization rules are defined in three places: * The data//tokenization table, which handles special cases like contractions; * The data//prefix file, used to build a regex to split off prefixes; * The data//suffix file, used to build a regex to split off suffixes. The string is first split on whitespace. To tokenize a whitespace-delimited chunk, we first try to look it up in the special-cases. If it's not found, we split off a prefix, and then try again. If it's still not found, we split off a suffix, and repeat. Args: string (unicode): The string to be tokenized. Returns: tokens (Doc): A Doc object, giving access to a sequence of LexemeCs. """ if len(string) >= (2 ** 30): raise ValueError( "String is too long: %d characters. Max is 2**30." % len(string) ) cdef int length = len(string) cdef Doc tokens = Doc(self.vocab) if length == 0: return tokens cdef int i = 0 cdef int start = 0 cdef bint cache_hit cdef bint in_ws = string[0].isspace() cdef unicode span # The task here is much like string.split, but not quite # We find spans of whitespace and non-space characters, and ignore # spans that are exactly ' '. So, our sequences will all be separated # by either ' ' or nothing. for uc in string: if uc.isspace() != in_ws: if start < i: # When we want to make this fast, get the data buffer once # with PyUnicode_AS_DATA, and then maintain a start_byte # and end_byte, so we can call hash64 directly. That way # we don't have to create the slice when we hit the cache. span = string[start:i] key = hash_string(span) cache_hit = self._try_cache(key, tokens) if not cache_hit: self._tokenize(tokens, span, key) if uc == ' ': tokens.c[tokens.length - 1].spacy = True start = i + 1 else: start = i in_ws = not in_ws i += 1 i += 1 if start < i: span = string[start:] key = hash_string(span) cache_hit = self._try_cache(key, tokens) if not cache_hit: self._tokenize(tokens, span, key) tokens.c[tokens.length - 1].spacy = string[-1] == ' ' and not in_ws return tokens def pipe(self, texts, batch_size=1000, n_threads=2): for text in texts: yield self(text) cdef int _try_cache(self, hash_t key, Doc tokens) except -1: cached = <_Cached*>self._cache.get(key) if cached == NULL: return False cdef int i if cached.is_lex: for i in range(cached.length): tokens.push_back(cached.data.lexemes[i], False) else: for i in range(cached.length): tokens.push_back(&cached.data.tokens[i], False) return True cdef int _tokenize(self, Doc tokens, unicode span, hash_t orig_key) except -1: cdef vector[LexemeC*] prefixes cdef vector[LexemeC*] suffixes cdef int orig_size orig_size = tokens.length span = self._split_affixes(tokens.mem, span, &prefixes, &suffixes) self._attach_tokens(tokens, span, &prefixes, &suffixes) self._save_cached(&tokens.c[orig_size], orig_key, tokens.length - orig_size) cdef unicode _split_affixes(self, Pool mem, unicode string, vector[const LexemeC*] *prefixes, vector[const LexemeC*] *suffixes): cdef size_t i cdef unicode prefix cdef unicode suffix cdef unicode minus_pre cdef unicode minus_suf cdef size_t last_size = 0 while string and len(string) != last_size: last_size = len(string) pre_len = self.find_prefix(string) if pre_len != 0: prefix = string[:pre_len] minus_pre = string[pre_len:] # Check whether we've hit a special-case if minus_pre and self._specials.get(hash_string(minus_pre)) != NULL: string = minus_pre prefixes.push_back(self.vocab.get(mem, prefix)) break suf_len = self.find_suffix(string) if suf_len != 0: suffix = string[-suf_len:] minus_suf = string[:-suf_len] # Check whether we've hit a special-case if minus_suf and (self._specials.get(hash_string(minus_suf)) != NULL): string = minus_suf suffixes.push_back(self.vocab.get(mem, suffix)) break if pre_len and suf_len and (pre_len + suf_len) <= len(string): string = string[pre_len:-suf_len] prefixes.push_back(self.vocab.get(mem, prefix)) suffixes.push_back(self.vocab.get(mem, suffix)) elif pre_len: string = minus_pre prefixes.push_back(self.vocab.get(mem, prefix)) elif suf_len: string = minus_suf suffixes.push_back(self.vocab.get(mem, suffix)) if string and (self._specials.get(hash_string(string)) != NULL): break return string cdef int _attach_tokens(self, Doc tokens, unicode string, vector[const LexemeC*] *prefixes, vector[const LexemeC*] *suffixes) except -1: cdef bint cache_hit cdef int split, end cdef const LexemeC* const* lexemes cdef const LexemeC* lexeme cdef unicode span cdef int i if prefixes.size(): for i in range(prefixes.size()): tokens.push_back(prefixes[0][i], False) if string: cache_hit = self._try_cache(hash_string(string), tokens) if not cache_hit: matches = self.find_infix(string) if not matches: tokens.push_back(self.vocab.get(tokens.mem, string), False) else: # let's say we have dyn-o-mite-dave # the regex finds the start and end positions of the hyphens start = 0 for match in matches: infix_start = match.start() infix_end = match.end() if infix_start == start: continue span = string[start:infix_start] tokens.push_back(self.vocab.get(tokens.mem, span), False) infix_span = string[infix_start:infix_end] tokens.push_back(self.vocab.get(tokens.mem, infix_span), False) start = infix_end span = string[start:] tokens.push_back(self.vocab.get(tokens.mem, span), False) cdef vector[const LexemeC*].reverse_iterator it = suffixes.rbegin() while it != suffixes.rend(): lexeme = deref(it) preinc(it) tokens.push_back(lexeme, False) cdef int _save_cached(self, const TokenC* tokens, hash_t key, int n) except -1: cdef int i for i in range(n): if tokens[i].lex.id == 0: return 0 cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached)) cached.length = n cached.is_lex = True lexemes = self.mem.alloc(n, sizeof(LexemeC**)) for i in range(n): lexemes[i] = tokens[i].lex cached.data.lexemes = lexemes self._cache.set(key, cached) def find_infix(self, unicode string): return list(self.infix_finditer(string)) def find_prefix(self, unicode string): match = self.prefix_search(string) return (match.end() - match.start()) if match is not None else 0 def find_suffix(self, unicode string): match = self.suffix_search(string) print("Suffix", match, string) return (match.end() - match.start()) if match is not None else 0 def _load_special_tokenization(self, special_cases): '''Add special-case tokenization rules. ''' for chunk, substrings in sorted(special_cases.items()): self.add_special_case(chunk, substrings) def add_special_case(self, unicode chunk, substrings): '''Add a special-case tokenization rule. For instance, "don't" is special-cased to tokenize into ["do", "n't"]. The split tokens can have lemmas and part-of-speech tags. ''' substrings = list(substrings) cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached)) cached.length = len(substrings) cached.is_lex = False cached.data.tokens = self.vocab.make_fused_token(substrings) key = hash_string(chunk) self._specials.set(key, cached) self._cache.set(key, cached) self._rules[chunk] = substrings