import weakref import numpy from numpy.testing import assert_array_equal import pytest from thinc.api import NumpyOps, get_current_ops from spacy.attrs import DEP, ENT_IOB, ENT_TYPE, HEAD, IS_ALPHA, MORPH, POS from spacy.attrs import SENT_START, TAG from spacy.lang.en import English from spacy.lang.xx import MultiLanguage from spacy.language import Language from spacy.lexeme import Lexeme from spacy.tokens import Doc, Span, Token from spacy.vocab import Vocab from .test_underscore import clean_underscore # noqa: F401 def test_doc_api_init(en_vocab): words = ["a", "b", "c", "d"] heads = [0, 0, 2, 2] # set sent_start by sent_starts doc = Doc(en_vocab, words=words, sent_starts=[True, False, True, False]) assert [t.is_sent_start for t in doc] == [True, False, True, False] # set sent_start by heads doc = Doc(en_vocab, words=words, heads=heads, deps=["dep"] * 4) assert [t.is_sent_start for t in doc] == [True, False, True, False] # heads override sent_starts doc = Doc( en_vocab, words=words, sent_starts=[True] * 4, heads=heads, deps=["dep"] * 4 ) assert [t.is_sent_start for t in doc] == [True, False, True, False] @pytest.mark.issue(1547) def test_issue1547(): """Test that entity labels still match after merging tokens.""" words = ["\n", "worda", ".", "\n", "wordb", "-", "Biosphere", "2", "-", " \n"] doc = Doc(Vocab(), words=words) doc.ents = [Span(doc, 6, 8, label=doc.vocab.strings["PRODUCT"])] with doc.retokenize() as retokenizer: retokenizer.merge(doc[5:7]) assert [ent.text for ent in doc.ents] @pytest.mark.issue(1757) def test_issue1757(): """Test comparison against None doesn't cause segfault.""" doc = Doc(Vocab(), words=["a", "b", "c"]) assert not doc[0] < None assert not doc[0] is None assert doc[0] >= None assert not doc[:2] < None assert not doc[:2] is None assert doc[:2] >= None assert not doc.vocab["a"] is None assert not doc.vocab["a"] < None @pytest.mark.issue(2396) def test_issue2396(en_vocab): words = ["She", "created", "a", "test", "for", "spacy"] heads = [1, 1, 3, 1, 3, 4] deps = ["dep"] * len(heads) matrix = numpy.array( [ [0, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 2, 3, 3, 3], [1, 1, 3, 3, 3, 3], [1, 1, 3, 3, 4, 4], [1, 1, 3, 3, 4, 5], ], dtype=numpy.int32, ) doc = Doc(en_vocab, words=words, heads=heads, deps=deps) span = doc[:] assert (doc.get_lca_matrix() == matrix).all() assert (span.get_lca_matrix() == matrix).all() @pytest.mark.parametrize("text", ["-0.23", "+123,456", "±1"]) @pytest.mark.parametrize("lang_cls", [English, MultiLanguage]) @pytest.mark.issue(2782) def test_issue2782(text, lang_cls): """Check that like_num handles + and - before number.""" nlp = lang_cls() doc = nlp(text) assert len(doc) == 1 assert doc[0].like_num @pytest.mark.parametrize( "sentence", [ "The story was to the effect that a young American student recently called on Professor Christlieb with a letter of introduction.", "The next month Barry Siddall joined Stoke City on a free transfer, after Chris Pearce had established himself as the Vale's #1.", "The next month Barry Siddall joined Stoke City on a free transfer, after Chris Pearce had established himself as the Vale's number one", "Indeed, making the one who remains do all the work has installed him into a position of such insolent tyranny, it will take a month at least to reduce him to his proper proportions.", "It was a missed assignment, but it shouldn't have resulted in a turnover ...", ], ) @pytest.mark.issue(3869) def test_issue3869(sentence): """Test that the Doc's count_by function works consistently""" nlp = English() doc = nlp(sentence) count = 0 for token in doc: count += token.is_alpha assert count == doc.count_by(IS_ALPHA).get(1, 0) @pytest.mark.issue(3962) def test_issue3962(en_vocab): """Ensure that as_doc does not result in out-of-bound access of tokens. This is achieved by setting the head to itself if it would lie out of the span otherwise.""" # fmt: off words = ["He", "jests", "at", "scars", ",", "that", "never", "felt", "a", "wound", "."] heads = [1, 7, 1, 2, 7, 7, 7, 7, 9, 7, 7] deps = ["nsubj", "ccomp", "prep", "pobj", "punct", "nsubj", "neg", "ROOT", "det", "dobj", "punct"] # fmt: on doc = Doc(en_vocab, words=words, heads=heads, deps=deps) span2 = doc[1:5] # "jests at scars ," doc2 = span2.as_doc() doc2_json = doc2.to_json() assert doc2_json # head set to itself, being the new artificial root assert doc2[0].head.text == "jests" assert doc2[0].dep_ == "dep" assert doc2[1].head.text == "jests" assert doc2[1].dep_ == "prep" assert doc2[2].head.text == "at" assert doc2[2].dep_ == "pobj" assert doc2[3].head.text == "jests" # head set to the new artificial root assert doc2[3].dep_ == "dep" # We should still have 1 sentence assert len(list(doc2.sents)) == 1 span3 = doc[6:9] # "never felt a" doc3 = span3.as_doc() doc3_json = doc3.to_json() assert doc3_json assert doc3[0].head.text == "felt" assert doc3[0].dep_ == "neg" assert doc3[1].head.text == "felt" assert doc3[1].dep_ == "ROOT" assert doc3[2].head.text == "felt" # head set to ancestor assert doc3[2].dep_ == "dep" # We should still have 1 sentence as "a" can be attached to "felt" instead of "wound" assert len(list(doc3.sents)) == 1 @pytest.mark.issue(3962) def test_issue3962_long(en_vocab): """Ensure that as_doc does not result in out-of-bound access of tokens. This is achieved by setting the head to itself if it would lie out of the span otherwise.""" # fmt: off words = ["He", "jests", "at", "scars", ".", "They", "never", "felt", "a", "wound", "."] heads = [1, 1, 1, 2, 1, 7, 7, 7, 9, 7, 7] deps = ["nsubj", "ROOT", "prep", "pobj", "punct", "nsubj", "neg", "ROOT", "det", "dobj", "punct"] # fmt: on two_sent_doc = Doc(en_vocab, words=words, heads=heads, deps=deps) span2 = two_sent_doc[1:7] # "jests at scars. They never" doc2 = span2.as_doc() doc2_json = doc2.to_json() assert doc2_json # head set to itself, being the new artificial root (in sentence 1) assert doc2[0].head.text == "jests" assert doc2[0].dep_ == "ROOT" assert doc2[1].head.text == "jests" assert doc2[1].dep_ == "prep" assert doc2[2].head.text == "at" assert doc2[2].dep_ == "pobj" assert doc2[3].head.text == "jests" assert doc2[3].dep_ == "punct" # head set to itself, being the new artificial root (in sentence 2) assert doc2[4].head.text == "They" assert doc2[4].dep_ == "dep" # head set to the new artificial head (in sentence 2) assert doc2[4].head.text == "They" assert doc2[4].dep_ == "dep" # We should still have 2 sentences sents = list(doc2.sents) assert len(sents) == 2 assert sents[0].text == "jests at scars ." assert sents[1].text == "They never" @Language.factory("my_pipe") class CustomPipe: def __init__(self, nlp, name="my_pipe"): self.name = name Span.set_extension("my_ext", getter=self._get_my_ext) Doc.set_extension("my_ext", default=None) def __call__(self, doc): gathered_ext = [] for sent in doc.sents: sent_ext = self._get_my_ext(sent) sent._.set("my_ext", sent_ext) gathered_ext.append(sent_ext) doc._.set("my_ext", "\n".join(gathered_ext)) return doc @staticmethod def _get_my_ext(span): return str(span.end) @pytest.mark.issue(4903) def test_issue4903(): """Ensure that this runs correctly and doesn't hang or crash on Windows / macOS.""" nlp = English() nlp.add_pipe("sentencizer") nlp.add_pipe("my_pipe", after="sentencizer") text = ["I like bananas.", "Do you like them?", "No, I prefer wasabi."] if isinstance(get_current_ops(), NumpyOps): docs = list(nlp.pipe(text, n_process=2)) assert docs[0].text == "I like bananas." assert docs[1].text == "Do you like them?" assert docs[2].text == "No, I prefer wasabi." @pytest.mark.issue(5048) def test_issue5048(en_vocab): words = ["This", "is", "a", "sentence"] pos_s = ["DET", "VERB", "DET", "NOUN"] spaces = [" ", " ", " ", ""] deps_s = ["dep", "adj", "nn", "atm"] tags_s = ["DT", "VBZ", "DT", "NN"] strings = en_vocab.strings for w in words: strings.add(w) deps = [strings.add(d) for d in deps_s] pos = [strings.add(p) for p in pos_s] tags = [strings.add(t) for t in tags_s] attrs = [POS, DEP, TAG] array = numpy.array(list(zip(pos, deps, tags)), dtype="uint64") doc = Doc(en_vocab, words=words, spaces=spaces) doc.from_array(attrs, array) v1 = [(token.text, token.pos_, token.tag_) for token in doc] doc2 = Doc(en_vocab, words=words, pos=pos_s, deps=deps_s, tags=tags_s) v2 = [(token.text, token.pos_, token.tag_) for token in doc2] assert v1 == v2 @pytest.mark.parametrize("text", [["one", "two", "three"]]) def test_doc_api_compare_by_string_position(en_vocab, text): doc = Doc(en_vocab, words=text) # Get the tokens in this order, so their ID ordering doesn't match the idx token3 = doc[-1] token2 = doc[-2] token1 = doc[-1] token1, token2, token3 = doc assert token1 < token2 < token3 assert not token1 > token2 assert token2 > token1 assert token2 <= token3 assert token3 >= token1 def test_doc_api_getitem(en_tokenizer): text = "Give it back! He pleaded." tokens = en_tokenizer(text) assert tokens[0].text == "Give" assert tokens[-1].text == "." with pytest.raises(IndexError): tokens[len(tokens)] def to_str(span): return "/".join(token.text for token in span) span = tokens[1:1] assert not to_str(span) span = tokens[1:4] assert to_str(span) == "it/back/!" span = tokens[1:4:1] assert to_str(span) == "it/back/!" with pytest.raises(ValueError): tokens[1:4:2] with pytest.raises(ValueError): tokens[1:4:-1] span = tokens[-3:6] assert to_str(span) == "He/pleaded" span = tokens[4:-1] assert to_str(span) == "He/pleaded" span = tokens[-5:-3] assert to_str(span) == "back/!" span = tokens[5:4] assert span.start == span.end == 5 and not to_str(span) span = tokens[4:-3] assert span.start == span.end == 4 and not to_str(span) span = tokens[:] assert to_str(span) == "Give/it/back/!/He/pleaded/." span = tokens[4:] assert to_str(span) == "He/pleaded/." span = tokens[:4] assert to_str(span) == "Give/it/back/!" span = tokens[:-3] assert to_str(span) == "Give/it/back/!" span = tokens[-3:] assert to_str(span) == "He/pleaded/." span = tokens[4:50] assert to_str(span) == "He/pleaded/." span = tokens[-50:4] assert to_str(span) == "Give/it/back/!" span = tokens[-50:-40] assert span.start == span.end == 0 and not to_str(span) span = tokens[40:50] assert span.start == span.end == 7 and not to_str(span) span = tokens[1:4] assert span[0].orth_ == "it" subspan = span[:] assert to_str(subspan) == "it/back/!" subspan = span[:2] assert to_str(subspan) == "it/back" subspan = span[1:] assert to_str(subspan) == "back/!" subspan = span[:-1] assert to_str(subspan) == "it/back" subspan = span[-2:] assert to_str(subspan) == "back/!" subspan = span[1:2] assert to_str(subspan) == "back" subspan = span[-2:-1] assert to_str(subspan) == "back" subspan = span[-50:50] assert to_str(subspan) == "it/back/!" subspan = span[50:-50] assert subspan.start == subspan.end == 4 and not to_str(subspan) @pytest.mark.parametrize( "text", ["Give it back! He pleaded.", " Give it back! He pleaded. "] ) def test_doc_api_serialize(en_tokenizer, text): tokens = en_tokenizer(text) tokens[0].lemma_ = "lemma" tokens[0].norm_ = "norm" tokens.ents = [(tokens.vocab.strings["PRODUCT"], 0, 1)] tokens[0].ent_kb_id_ = "ent_kb_id" tokens[0].ent_id_ = "ent_id" new_tokens = Doc(tokens.vocab).from_bytes(tokens.to_bytes()) assert tokens.text == new_tokens.text assert [t.text for t in tokens] == [t.text for t in new_tokens] assert [t.orth for t in tokens] == [t.orth for t in new_tokens] assert new_tokens[0].lemma_ == "lemma" assert new_tokens[0].norm_ == "norm" assert new_tokens[0].ent_kb_id_ == "ent_kb_id" assert new_tokens[0].ent_id_ == "ent_id" new_tokens = Doc(tokens.vocab).from_bytes( tokens.to_bytes(exclude=["tensor"]), exclude=["tensor"] ) assert tokens.text == new_tokens.text assert [t.text for t in tokens] == [t.text for t in new_tokens] assert [t.orth for t in tokens] == [t.orth for t in new_tokens] new_tokens = Doc(tokens.vocab).from_bytes( tokens.to_bytes(exclude=["sentiment"]), exclude=["sentiment"] ) assert tokens.text == new_tokens.text assert [t.text for t in tokens] == [t.text for t in new_tokens] assert [t.orth for t in tokens] == [t.orth for t in new_tokens] def inner_func(d1, d2): return "hello!" _ = tokens.to_bytes() # noqa: F841 with pytest.warns(UserWarning): tokens.user_hooks["similarity"] = inner_func _ = tokens.to_bytes() # noqa: F841 def test_doc_api_set_ents(en_tokenizer): text = "I use goggle chrone to surf the web" tokens = en_tokenizer(text) assert len(tokens.ents) == 0 tokens.ents = [(tokens.vocab.strings["PRODUCT"], 2, 4)] assert len(list(tokens.ents)) == 1 assert [t.ent_iob for t in tokens] == [2, 2, 3, 1, 2, 2, 2, 2] assert tokens.ents[0].label_ == "PRODUCT" assert tokens.ents[0].start == 2 assert tokens.ents[0].end == 4 def test_doc_api_sents_empty_string(en_tokenizer): doc = en_tokenizer("") sents = list(doc.sents) assert len(sents) == 0 def test_doc_api_runtime_error(en_tokenizer): # Example that caused run-time error while parsing Reddit # fmt: off text = "67% of black households are single parent \n\n72% of all black babies born out of wedlock \n\n50% of all black kids don\u2019t finish high school" deps = ["nummod", "nsubj", "prep", "amod", "pobj", "ROOT", "amod", "attr", "", "nummod", "appos", "prep", "det", "amod", "pobj", "acl", "prep", "prep", "pobj", "", "nummod", "nsubj", "prep", "det", "amod", "pobj", "aux", "neg", "ccomp", "amod", "dobj"] # fmt: on tokens = en_tokenizer(text) doc = Doc(tokens.vocab, words=[t.text for t in tokens], deps=deps) nps = [] for np in doc.noun_chunks: while len(np) > 1 and np[0].dep_ not in ("advmod", "amod", "compound"): np = np[1:] if len(np) > 1: nps.append(np) with doc.retokenize() as retokenizer: for np in nps: attrs = { "tag": np.root.tag_, "lemma": np.text, "ent_type": np.root.ent_type_, } retokenizer.merge(np, attrs=attrs) def test_doc_api_right_edge(en_vocab): """Test for bug occurring from Unshift action, causing incorrect right edge""" # fmt: off words = [ "I", "have", "proposed", "to", "myself", ",", "for", "the", "sake", "of", "such", "as", "live", "under", "the", "government", "of", "the", "Romans", ",", "to", "translate", "those", "books", "into", "the", "Greek", "tongue", "." ] heads = [2, 2, 2, 2, 3, 2, 21, 8, 6, 8, 11, 8, 11, 12, 15, 13, 15, 18, 16, 12, 21, 2, 23, 21, 21, 27, 27, 24, 2] deps = ["dep"] * len(heads) # fmt: on doc = Doc(en_vocab, words=words, heads=heads, deps=deps) assert doc[6].text == "for" subtree = [w.text for w in doc[6].subtree] # fmt: off assert subtree == ["for", "the", "sake", "of", "such", "as", "live", "under", "the", "government", "of", "the", "Romans", ","] # fmt: on assert doc[6].right_edge.text == "," def test_doc_api_has_vector(): vocab = Vocab() vocab.reset_vectors(width=2) vocab.set_vector("kitten", vector=numpy.asarray([0.0, 2.0], dtype="f")) doc = Doc(vocab, words=["kitten"]) assert doc.has_vector def test_doc_api_similarity_match(): doc = Doc(Vocab(), words=["a"]) assert doc.similarity(doc[0]) == 1.0 assert doc.similarity(doc.vocab["a"]) == 1.0 doc2 = Doc(doc.vocab, words=["a", "b", "c"]) with pytest.warns(UserWarning): assert doc.similarity(doc2[:1]) == 1.0 assert doc.similarity(doc2) == 0.0 @pytest.mark.parametrize( "words,heads,lca_matrix", [ ( ["the", "lazy", "dog", "slept"], [2, 2, 3, 3], numpy.array([[0, 2, 2, 3], [2, 1, 2, 3], [2, 2, 2, 3], [3, 3, 3, 3]]), ), ( ["The", "lazy", "dog", "slept", ".", "The", "quick", "fox", "jumped"], [2, 2, 3, 3, 3, 7, 7, 8, 8], numpy.array( [ [0, 2, 2, 3, 3, -1, -1, -1, -1], [2, 1, 2, 3, 3, -1, -1, -1, -1], [2, 2, 2, 3, 3, -1, -1, -1, -1], [3, 3, 3, 3, 3, -1, -1, -1, -1], [3, 3, 3, 3, 4, -1, -1, -1, -1], [-1, -1, -1, -1, -1, 5, 7, 7, 8], [-1, -1, -1, -1, -1, 7, 6, 7, 8], [-1, -1, -1, -1, -1, 7, 7, 7, 8], [-1, -1, -1, -1, -1, 8, 8, 8, 8], ] ), ), ], ) def test_lowest_common_ancestor(en_vocab, words, heads, lca_matrix): doc = Doc(en_vocab, words, heads=heads, deps=["dep"] * len(heads)) lca = doc.get_lca_matrix() assert (lca == lca_matrix).all() assert lca[1, 1] == 1 assert lca[0, 1] == 2 assert lca[1, 2] == 2 def test_doc_is_nered(en_vocab): words = ["I", "live", "in", "New", "York"] doc = Doc(en_vocab, words=words) assert not doc.has_annotation("ENT_IOB") doc.ents = [Span(doc, 3, 5, label="GPE")] assert doc.has_annotation("ENT_IOB") # Test creating doc from array with unknown values arr = numpy.array([[0, 0], [0, 0], [0, 0], [384, 3], [384, 1]], dtype="uint64") doc = Doc(en_vocab, words=words).from_array([ENT_TYPE, ENT_IOB], arr) assert doc.has_annotation("ENT_IOB") # Test serialization new_doc = Doc(en_vocab).from_bytes(doc.to_bytes()) assert new_doc.has_annotation("ENT_IOB") def test_doc_from_array_sent_starts(en_vocab): # fmt: off words = ["I", "live", "in", "New", "York", ".", "I", "like", "cats", "."] heads = [0, 0, 0, 0, 0, 0, 6, 6, 6, 6] deps = ["ROOT", "dep", "dep", "dep", "dep", "dep", "ROOT", "dep", "dep", "dep"] # fmt: on doc = Doc(en_vocab, words=words, heads=heads, deps=deps) # HEAD overrides SENT_START without warning attrs = [SENT_START, HEAD] arr = doc.to_array(attrs) new_doc = Doc(en_vocab, words=words) new_doc.from_array(attrs, arr) # no warning using default attrs attrs = doc._get_array_attrs() arr = doc.to_array(attrs) with pytest.warns(None) as record: new_doc.from_array(attrs, arr) assert len(record) == 0 # only SENT_START uses SENT_START attrs = [SENT_START] arr = doc.to_array(attrs) new_doc = Doc(en_vocab, words=words) new_doc.from_array(attrs, arr) assert [t.is_sent_start for t in doc] == [t.is_sent_start for t in new_doc] assert not new_doc.has_annotation("DEP") # only HEAD uses HEAD attrs = [HEAD, DEP] arr = doc.to_array(attrs) new_doc = Doc(en_vocab, words=words) new_doc.from_array(attrs, arr) assert [t.is_sent_start for t in doc] == [t.is_sent_start for t in new_doc] assert new_doc.has_annotation("DEP") def test_doc_from_array_morph(en_vocab): # fmt: off words = ["I", "live", "in", "New", "York", "."] morphs = ["Feat1=A", "Feat1=B", "Feat1=C", "Feat1=A|Feat2=D", "Feat2=E", "Feat3=F"] # fmt: on doc = Doc(en_vocab, words=words, morphs=morphs) attrs = [MORPH] arr = doc.to_array(attrs) new_doc = Doc(en_vocab, words=words) new_doc.from_array(attrs, arr) assert [str(t.morph) for t in new_doc] == morphs assert [str(t.morph) for t in doc] == [str(t.morph) for t in new_doc] @pytest.mark.usefixtures("clean_underscore") def test_doc_api_from_docs(en_tokenizer, de_tokenizer): en_texts = [ "Merging the docs is fun.", "", "They don't think alike. ", "", "Another doc.", ] en_texts_without_empty = [t for t in en_texts if len(t)] de_text = "Wie war die Frage?" en_docs = [en_tokenizer(text) for text in en_texts] en_docs[0].spans["group"] = [en_docs[0][1:4]] en_docs[2].spans["group"] = [en_docs[2][1:4]] en_docs[4].spans["group"] = [en_docs[4][0:1]] span_group_texts = sorted( [en_docs[0][1:4].text, en_docs[2][1:4].text, en_docs[4][0:1].text] ) de_doc = de_tokenizer(de_text) Token.set_extension("is_ambiguous", default=False) en_docs[0][2]._.is_ambiguous = True # docs en_docs[2][3]._.is_ambiguous = True # think assert Doc.from_docs([]) is None assert de_doc is not Doc.from_docs([de_doc]) assert str(de_doc) == str(Doc.from_docs([de_doc])) with pytest.raises(ValueError): Doc.from_docs(en_docs + [de_doc]) m_doc = Doc.from_docs(en_docs) assert len(en_texts_without_empty) == len(list(m_doc.sents)) assert len(m_doc.text) > len(en_texts[0]) + len(en_texts[1]) assert m_doc.text == " ".join([t.strip() for t in en_texts_without_empty]) p_token = m_doc[len(en_docs[0]) - 1] assert p_token.text == "." and bool(p_token.whitespace_) en_docs_tokens = [t for doc in en_docs for t in doc] assert len(m_doc) == len(en_docs_tokens) think_idx = len(en_texts[0]) + 1 + en_texts[2].index("think") assert m_doc[2]._.is_ambiguous is True assert m_doc[9].idx == think_idx assert m_doc[9]._.is_ambiguous is True assert not any([t._.is_ambiguous for t in m_doc[3:8]]) assert "group" in m_doc.spans assert span_group_texts == sorted([s.text for s in m_doc.spans["group"]]) assert bool(m_doc[11].whitespace_) m_doc = Doc.from_docs(en_docs, ensure_whitespace=False) assert len(en_texts_without_empty) == len(list(m_doc.sents)) assert len(m_doc.text) == sum(len(t) for t in en_texts) assert m_doc.text == "".join(en_texts_without_empty) p_token = m_doc[len(en_docs[0]) - 1] assert p_token.text == "." and not bool(p_token.whitespace_) en_docs_tokens = [t for doc in en_docs for t in doc] assert len(m_doc) == len(en_docs_tokens) think_idx = len(en_texts[0]) + 0 + en_texts[2].index("think") assert m_doc[9].idx == think_idx assert "group" in m_doc.spans assert span_group_texts == sorted([s.text for s in m_doc.spans["group"]]) assert bool(m_doc[11].whitespace_) m_doc = Doc.from_docs(en_docs, attrs=["lemma", "length", "pos"]) assert len(m_doc.text) > len(en_texts[0]) + len(en_texts[1]) # space delimiter considered, although spacy attribute was missing assert m_doc.text == " ".join([t.strip() for t in en_texts_without_empty]) p_token = m_doc[len(en_docs[0]) - 1] assert p_token.text == "." and bool(p_token.whitespace_) en_docs_tokens = [t for doc in en_docs for t in doc] assert len(m_doc) == len(en_docs_tokens) think_idx = len(en_texts[0]) + 1 + en_texts[2].index("think") assert m_doc[9].idx == think_idx assert "group" in m_doc.spans assert span_group_texts == sorted([s.text for s in m_doc.spans["group"]]) # can exclude spans m_doc = Doc.from_docs(en_docs, exclude=["spans"]) assert "group" not in m_doc.spans # can exclude user_data m_doc = Doc.from_docs(en_docs, exclude=["user_data"]) assert m_doc.user_data == {} # can merge empty docs doc = Doc.from_docs([en_tokenizer("")] * 10) # empty but set spans keys are preserved en_docs = [en_tokenizer(text) for text in en_texts] m_doc = Doc.from_docs(en_docs) assert "group" not in m_doc.spans for doc in en_docs: doc.spans["group"] = [] m_doc = Doc.from_docs(en_docs) assert "group" in m_doc.spans assert len(m_doc.spans["group"]) == 0 # with tensor ops = get_current_ops() for doc in en_docs: doc.tensor = ops.asarray([[len(t.text), 0.0] for t in doc]) m_doc = Doc.from_docs(en_docs) assert_array_equal( ops.to_numpy(m_doc.tensor), ops.to_numpy(ops.xp.vstack([doc.tensor for doc in en_docs if len(doc)])), ) # can exclude tensor m_doc = Doc.from_docs(en_docs, exclude=["tensor"]) assert m_doc.tensor.shape == (0,) def test_doc_api_from_docs_ents(en_tokenizer): texts = ["Merging the docs is fun.", "They don't think alike."] docs = [en_tokenizer(t) for t in texts] docs[0].ents = () docs[1].ents = (Span(docs[1], 0, 1, label="foo"),) doc = Doc.from_docs(docs) assert len(doc.ents) == 1 def test_doc_lang(en_vocab): doc = Doc(en_vocab, words=["Hello", "world"]) assert doc.lang_ == "en" assert doc.lang == en_vocab.strings["en"] assert doc[0].lang_ == "en" assert doc[0].lang == en_vocab.strings["en"] nlp = English() doc = nlp("Hello world") assert doc.lang_ == "en" assert doc.lang == en_vocab.strings["en"] assert doc[0].lang_ == "en" assert doc[0].lang == en_vocab.strings["en"] def test_token_lexeme(en_vocab): """Test that tokens expose their lexeme.""" token = Doc(en_vocab, words=["Hello", "world"])[0] assert isinstance(token.lex, Lexeme) assert token.lex.text == token.text assert en_vocab[token.orth] == token.lex def test_has_annotation(en_vocab): doc = Doc(en_vocab, words=["Hello", "world"]) attrs = ("TAG", "POS", "MORPH", "LEMMA", "DEP", "HEAD", "ENT_IOB", "ENT_TYPE") for attr in attrs: assert not doc.has_annotation(attr) assert not doc.has_annotation(attr, require_complete=True) doc[0].tag_ = "A" doc[0].pos_ = "X" doc[0].set_morph("Feat=Val") doc[0].lemma_ = "a" doc[0].dep_ = "dep" doc[0].head = doc[1] doc.set_ents([Span(doc, 0, 1, label="HELLO")], default="missing") for attr in attrs: assert doc.has_annotation(attr) assert not doc.has_annotation(attr, require_complete=True) doc[1].tag_ = "A" doc[1].pos_ = "X" doc[1].set_morph("") doc[1].lemma_ = "a" doc[1].dep_ = "dep" doc.ents = [Span(doc, 0, 2, label="HELLO")] for attr in attrs: assert doc.has_annotation(attr) assert doc.has_annotation(attr, require_complete=True) def test_has_annotation_sents(en_vocab): doc = Doc(en_vocab, words=["Hello", "beautiful", "world"]) attrs = ("SENT_START", "IS_SENT_START", "IS_SENT_END") for attr in attrs: assert not doc.has_annotation(attr) assert not doc.has_annotation(attr, require_complete=True) # The first token (index 0) is always assumed to be a sentence start, # and ignored by the check in doc.has_annotation doc[1].is_sent_start = False for attr in attrs: assert doc.has_annotation(attr) assert not doc.has_annotation(attr, require_complete=True) doc[2].is_sent_start = False for attr in attrs: assert doc.has_annotation(attr) assert doc.has_annotation(attr, require_complete=True) def test_is_flags_deprecated(en_tokenizer): doc = en_tokenizer("test") with pytest.deprecated_call(): doc.is_tagged with pytest.deprecated_call(): doc.is_parsed with pytest.deprecated_call(): doc.is_nered with pytest.deprecated_call(): doc.is_sentenced def test_doc_set_ents(en_tokenizer): # set ents doc = en_tokenizer("a b c d e") doc.set_ents([Span(doc, 0, 1, 10), Span(doc, 1, 3, 11)]) assert [t.ent_iob for t in doc] == [3, 3, 1, 2, 2] assert [t.ent_type for t in doc] == [10, 11, 11, 0, 0] # add ents, invalid IOB repaired doc = en_tokenizer("a b c d e") doc.set_ents([Span(doc, 0, 1, 10), Span(doc, 1, 3, 11)]) doc.set_ents([Span(doc, 0, 2, 12)], default="unmodified") assert [t.ent_iob for t in doc] == [3, 1, 3, 2, 2] assert [t.ent_type for t in doc] == [12, 12, 11, 0, 0] # missing ents doc = en_tokenizer("a b c d e") doc.set_ents([Span(doc, 0, 1, 10), Span(doc, 1, 3, 11)], missing=[doc[4:5]]) assert [t.ent_iob for t in doc] == [3, 3, 1, 2, 0] assert [t.ent_type for t in doc] == [10, 11, 11, 0, 0] # outside ents doc = en_tokenizer("a b c d e") doc.set_ents( [Span(doc, 0, 1, 10), Span(doc, 1, 3, 11)], outside=[doc[4:5]], default="missing", ) assert [t.ent_iob for t in doc] == [3, 3, 1, 0, 2] assert [t.ent_type for t in doc] == [10, 11, 11, 0, 0] # blocked ents doc = en_tokenizer("a b c d e") doc.set_ents([], blocked=[doc[1:2], doc[3:5]], default="unmodified") assert [t.ent_iob for t in doc] == [0, 3, 0, 3, 3] assert [t.ent_type for t in doc] == [0, 0, 0, 0, 0] assert doc.ents == tuple() # invalid IOB repaired after blocked doc.ents = [Span(doc, 3, 5, "ENT")] assert [t.ent_iob for t in doc] == [2, 2, 2, 3, 1] doc.set_ents([], blocked=[doc[3:4]], default="unmodified") assert [t.ent_iob for t in doc] == [2, 2, 2, 3, 3] # all types doc = en_tokenizer("a b c d e") doc.set_ents( [Span(doc, 0, 1, 10)], blocked=[doc[1:2]], missing=[doc[2:3]], outside=[doc[3:4]], default="unmodified", ) assert [t.ent_iob for t in doc] == [3, 3, 0, 2, 0] assert [t.ent_type for t in doc] == [10, 0, 0, 0, 0] doc = en_tokenizer("a b c d e") # single span instead of a list with pytest.raises(ValueError): doc.set_ents([], missing=doc[1:2]) # invalid default mode with pytest.raises(ValueError): doc.set_ents([], missing=[doc[1:2]], default="none") # conflicting/overlapping specifications with pytest.raises(ValueError): doc.set_ents([], missing=[doc[1:2]], outside=[doc[1:2]]) def test_doc_ents_setter(): """Test that both strings and integers can be used to set entities in tuple format via doc.ents.""" words = ["a", "b", "c", "d", "e"] doc = Doc(Vocab(), words=words) doc.ents = [("HELLO", 0, 2), (doc.vocab.strings.add("WORLD"), 3, 5)] assert [e.label_ for e in doc.ents] == ["HELLO", "WORLD"] vocab = Vocab() ents = [("HELLO", 0, 2), (vocab.strings.add("WORLD"), 3, 5)] ents = ["B-HELLO", "I-HELLO", "O", "B-WORLD", "I-WORLD"] doc = Doc(vocab, words=words, ents=ents) assert [e.label_ for e in doc.ents] == ["HELLO", "WORLD"] def test_doc_morph_setter(en_tokenizer, de_tokenizer): doc1 = en_tokenizer("a b") doc1b = en_tokenizer("c d") doc2 = de_tokenizer("a b") # unset values can be copied doc1[0].morph = doc1[1].morph assert doc1[0].morph.key == 0 assert doc1[1].morph.key == 0 # morph values from the same vocab can be copied doc1[0].set_morph("Feat=Val") doc1[1].morph = doc1[0].morph assert doc1[0].morph == doc1[1].morph # ... also across docs doc1b[0].morph = doc1[0].morph assert doc1[0].morph == doc1b[0].morph doc2[0].set_morph("Feat2=Val2") # the morph value must come from the same vocab with pytest.raises(ValueError): doc1[0].morph = doc2[0].morph def test_doc_init_iob(): """Test ents validation/normalization in Doc.__init__""" words = ["a", "b", "c", "d", "e"] ents = ["O"] * len(words) doc = Doc(Vocab(), words=words, ents=ents) assert doc.ents == () ents = ["B-PERSON", "I-PERSON", "O", "I-PERSON", "I-PERSON"] doc = Doc(Vocab(), words=words, ents=ents) assert len(doc.ents) == 2 ents = ["B-PERSON", "I-PERSON", "O", "I-PERSON", "I-GPE"] doc = Doc(Vocab(), words=words, ents=ents) assert len(doc.ents) == 3 # None is missing ents = ["B-PERSON", "I-PERSON", "O", None, "I-GPE"] doc = Doc(Vocab(), words=words, ents=ents) assert len(doc.ents) == 2 # empty tag is missing ents = ["", "B-PERSON", "O", "B-PERSON", "I-PERSON"] doc = Doc(Vocab(), words=words, ents=ents) assert len(doc.ents) == 2 # invalid IOB ents = ["Q-PERSON", "I-PERSON", "O", "I-PERSON", "I-GPE"] with pytest.raises(ValueError): doc = Doc(Vocab(), words=words, ents=ents) # no dash ents = ["OPERSON", "I-PERSON", "O", "I-PERSON", "I-GPE"] with pytest.raises(ValueError): doc = Doc(Vocab(), words=words, ents=ents) # no ent type ents = ["O", "B-", "O", "I-PERSON", "I-GPE"] with pytest.raises(ValueError): doc = Doc(Vocab(), words=words, ents=ents) # not strings or None ents = [0, "B-", "O", "I-PERSON", "I-GPE"] with pytest.raises(ValueError): doc = Doc(Vocab(), words=words, ents=ents) def test_doc_set_ents_invalid_spans(en_tokenizer): doc = en_tokenizer("Some text about Colombia and the Czech Republic") spans = [Span(doc, 3, 4, label="GPE"), Span(doc, 6, 8, label="GPE")] with doc.retokenize() as retokenizer: for span in spans: retokenizer.merge(span) with pytest.raises(IndexError): doc.ents = spans def test_doc_noun_chunks_not_implemented(): """Test that a language without noun_chunk iterator, throws a NotImplementedError""" text = "Může data vytvářet a spravovat, ale především je dokáže analyzovat, najít v nich nové vztahy a vše přehledně vizualizovat." nlp = MultiLanguage() doc = nlp(text) with pytest.raises(NotImplementedError): _ = list(doc.noun_chunks) # noqa: F841 def test_span_groups(en_tokenizer): doc = en_tokenizer("Some text about Colombia and the Czech Republic") doc.spans["hi"] = [Span(doc, 3, 4, label="bye")] assert "hi" in doc.spans assert "bye" not in doc.spans assert len(doc.spans["hi"]) == 1 assert doc.spans["hi"][0].label_ == "bye" doc.spans["hi"].append(doc[0:3]) assert len(doc.spans["hi"]) == 2 assert doc.spans["hi"][1].text == "Some text about" assert [span.text for span in doc.spans["hi"]] == ["Colombia", "Some text about"] assert not doc.spans["hi"].has_overlap doc.ents = [Span(doc, 3, 4, label="GPE"), Span(doc, 6, 8, label="GPE")] doc.spans["hi"].extend(doc.ents) assert len(doc.spans["hi"]) == 4 assert [span.label_ for span in doc.spans["hi"]] == ["bye", "", "GPE", "GPE"] assert doc.spans["hi"].has_overlap del doc.spans["hi"] assert "hi" not in doc.spans def test_doc_spans_copy(en_tokenizer): doc1 = en_tokenizer("Some text about Colombia and the Czech Republic") assert weakref.ref(doc1) == doc1.spans.doc_ref doc2 = doc1.copy() assert weakref.ref(doc2) == doc2.spans.doc_ref