# coding: utf8 from __future__ import unicode_literals from .render import DependencyRenderer, EntityRenderer from ..tokens import Doc, Span from ..compat import b_to_str from ..errors import Errors, Warnings, user_warning from ..util import prints, is_in_jupyter _html = {} def render(docs, style='dep', page=False, minify=False, jupyter=False, options={}, manual=False): """Render displaCy visualisation. docs (list or Doc): Document(s) to visualise. style (unicode): Visualisation style, 'dep' or 'ent'. page (bool): Render markup as full HTML page. minify (bool): Minify HTML markup. jupyter (bool): Experimental, use Jupyter's `display()` to output markup. options (dict): Visualiser-specific options, e.g. colors. manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts. RETURNS (unicode): Rendered HTML markup. """ factories = {'dep': (DependencyRenderer, parse_deps), 'ent': (EntityRenderer, parse_ents)} if style not in factories: raise ValueError(Errors.E087.format(style=style)) if isinstance(docs, (Doc, Span, dict)): docs = [docs] docs = [obj if not isinstance(obj, Span) else obj.as_doc() for obj in docs] if not all(isinstance(obj, (Doc, Span, dict)) for obj in docs): raise ValueError(Errors.E096) renderer, converter = factories[style] renderer = renderer(options=options) parsed = [converter(doc, options) for doc in docs] if not manual else docs _html['parsed'] = renderer.render(parsed, page=page, minify=minify).strip() html = _html['parsed'] if jupyter or is_in_jupyter(): # return HTML rendered by IPython display() from IPython.core.display import display, HTML return display(HTML(html)) return html def serve(docs, style='dep', page=True, minify=False, options={}, manual=False, port=5000): """Serve displaCy visualisation. docs (list or Doc): Document(s) to visualise. style (unicode): Visualisation style, 'dep' or 'ent'. page (bool): Render markup as full HTML page. minify (bool): Minify HTML markup. options (dict): Visualiser-specific options, e.g. colors. manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts. port (int): Port to serve visualisation. """ from wsgiref import simple_server render(docs, style=style, page=page, minify=minify, options=options, manual=manual) httpd = simple_server.make_server('0.0.0.0', port, app) prints("Using the '{}' visualizer".format(style), title="Serving on port {}...".format(port)) try: httpd.serve_forever() except KeyboardInterrupt: prints("Shutting down server on port {}.".format(port)) finally: httpd.server_close() def app(environ, start_response): # headers and status need to be bytes in Python 2, see #1227 headers = [(b_to_str(b'Content-type'), b_to_str(b'text/html; charset=utf-8'))] start_response(b_to_str(b'200 OK'), headers) res = _html['parsed'].encode(encoding='utf-8') return [res] def parse_deps(orig_doc, options={}): """Generate dependency parse in {'words': [], 'arcs': []} format. doc (Doc): Document do parse. RETURNS (dict): Generated dependency parse keyed by words and arcs. """ doc = Doc(orig_doc.vocab).from_bytes(orig_doc.to_bytes()) if not doc.is_parsed: user_warning(Warnings.W005) if options.get('collapse_phrases', False): for np in list(doc.noun_chunks): np.merge(tag=np.root.tag_, lemma=np.root.lemma_, ent_type=np.root.ent_type_) if options.get('collapse_punct', True): spans = [] for word in doc[:-1]: if word.is_punct or not word.nbor(1).is_punct: continue start = word.i end = word.i + 1 while end < len(doc) and doc[end].is_punct: end += 1 span = doc[start:end] spans.append((span.start_char, span.end_char, word.tag_, word.lemma_, word.ent_type_)) for start, end, tag, lemma, ent_type in spans: doc.merge(start, end, tag=tag, lemma=lemma, ent_type=ent_type) if options.get('fine_grained'): words = [{'text': w.text, 'tag': w.tag_} for w in doc] else: words = [{'text': w.text, 'tag': w.pos_} for w in doc] arcs = [] for word in doc: if word.i < word.head.i: arcs.append({'start': word.i, 'end': word.head.i, 'label': word.dep_, 'dir': 'left'}) elif word.i > word.head.i: arcs.append({'start': word.head.i, 'end': word.i, 'label': word.dep_, 'dir': 'right'}) return {'words': words, 'arcs': arcs} def parse_ents(doc, options={}): """Generate named entities in [{start: i, end: i, label: 'label'}] format. doc (Doc): Document do parse. RETURNS (dict): Generated entities keyed by text (original text) and ents. """ ents = [{'start': ent.start_char, 'end': ent.end_char, 'label': ent.label_} for ent in doc.ents] if not ents: user_warning(Warnings.W006) title = (doc.user_data.get('title', None) if hasattr(doc, 'user_data') else None) return {'text': doc.text, 'ents': ents, 'title': title}