import pytest from numpy.testing import assert_almost_equal from thinc.api import Config, fix_random_seed, get_current_ops from spacy.lang.en import English from spacy.pipeline.textcat import single_label_default_config, single_label_bow_config from spacy.pipeline.textcat import single_label_cnn_config from spacy.pipeline.textcat_multilabel import multi_label_default_config from spacy.pipeline.textcat_multilabel import multi_label_bow_config from spacy.pipeline.textcat_multilabel import multi_label_cnn_config from spacy.tokens import Span from spacy import displacy from spacy.pipeline import merge_entities from spacy.training import Example @pytest.mark.parametrize( "textcat_config", [ single_label_default_config, single_label_bow_config, single_label_cnn_config, multi_label_default_config, multi_label_bow_config, multi_label_cnn_config, ], ) @pytest.mark.issue(5551) def test_issue5551(textcat_config): """Test that after fixing the random seed, the results of the pipeline are truly identical""" component = "textcat" pipe_cfg = Config().from_str(textcat_config) results = [] for i in range(3): fix_random_seed(0) nlp = English() text = "Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g." annots = {"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}} pipe = nlp.add_pipe(component, config=pipe_cfg, last=True) for label in set(annots["cats"]): pipe.add_label(label) # Train nlp.initialize() doc = nlp.make_doc(text) nlp.update([Example.from_dict(doc, annots)]) # Store the result of each iteration result = pipe.model.predict([doc]) results.append(result[0]) # All results should be the same because of the fixed seed assert len(results) == 3 ops = get_current_ops() assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[1]), decimal=5) assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[2]), decimal=5) @pytest.mark.issue(5838) def test_issue5838(): # Displacy's EntityRenderer break line # not working after last entity sample_text = "First line\nSecond line, with ent\nThird line\nFourth line\n" nlp = English() doc = nlp(sample_text) doc.ents = [Span(doc, 7, 8, label="test")] html = displacy.render(doc, style="ent") found = html.count("
") assert found == 4 @pytest.mark.issue(5918) def test_issue5918(): # Test edge case when merging entities. nlp = English() ruler = nlp.add_pipe("entity_ruler") patterns = [ {"label": "ORG", "pattern": "Digicon Inc"}, {"label": "ORG", "pattern": "Rotan Mosle Inc's"}, {"label": "ORG", "pattern": "Rotan Mosle Technology Partners Ltd"}, ] ruler.add_patterns(patterns) text = """ Digicon Inc said it has completed the previously-announced disposition of its computer systems division to an investment group led by Rotan Mosle Inc's Rotan Mosle Technology Partners Ltd affiliate. """ doc = nlp(text) assert len(doc.ents) == 3 # make it so that the third span's head is within the entity (ent_iob=I) # bug #5918 would wrongly transfer that I to the full entity, resulting in 2 instead of 3 final ents. # TODO: test for logging here # with pytest.warns(UserWarning): # doc[29].head = doc[33] doc = merge_entities(doc) assert len(doc.ents) == 3