--- title: TextCategorizer tag: class source: spacy/pipeline.pyx new: 2 --- This class is a subclass of `Pipe` and follows the same API. The pipeline component is available in the [processing pipeline](/usage/processing-pipelines) via the ID `"textcat"`. ## TextCategorizer.Model {#model tag="classmethod"} Initialize a model for the pipe. The model should implement the `thinc.neural.Model` API. Wrappers are under development for most major machine learning libraries. | Name | Type | Description | | ----------- | ------ | ------------------------------------- | | `**kwargs` | - | Parameters for initializing the model | | **RETURNS** | object | The initialized model. | ## TextCategorizer.\_\_init\_\_ {#init tag="method"} Create a new pipeline instance. In your application, you would normally use a shortcut for this and instantiate the component using its string name and [`nlp.create_pipe`](/api/language#create_pipe). > #### Example > > ```python > # Construction via create_pipe > textcat = nlp.create_pipe("textcat") > textcat = nlp.create_pipe("textcat", config={"exclusive_classes": True}) > > # Construction from class > from spacy.pipeline import TextCategorizer > textcat = TextCategorizer(nlp.vocab) > textcat.from_disk("/path/to/model") > ``` | Name | Type | Description | | ------------------- | ----------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------- | | `vocab` | `Vocab` | The shared vocabulary. | | `model` | `thinc.neural.Model` / `True` | The model powering the pipeline component. If no model is supplied, the model is created when you call `begin_training`, `from_disk` or `from_bytes`. | | `exclusive_classes` | bool | Make categories mutually exclusive. Defaults to `False`. | | `architecture` | unicode | Model architecture to use, see [architectures](#architectures) for details. Defaults to `"ensemble"`. | | **RETURNS** | `TextCategorizer` | The newly constructed object. | ### Architectures {#architectures new="2.1"} Text classification models can be used to solve a wide variety of problems. Differences in text length, number of labels, difficulty, and runtime performance constraints mean that no single algorithm performs well on all types of problems. To handle a wider variety of problems, the `TextCategorizer` object allows configuration of its model architecture, using the `architecture` keyword argument. | Name | Description | | -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- | | `"ensemble"` | **Default:** Stacked ensemble of a unigram bag-of-words model and a neural network model. The neural network uses a CNN with mean pooling and attention. | | `"simple_cnn"` | A neural network model where token vectors are calculated using a CNN. The vectors are mean pooled and used as features in a feed-forward network. | ## TextCategorizer.\_\_call\_\_ {#call tag="method"} Apply the pipe to one document. The document is modified in place, and returned. This usually happens under the hood when you call the `nlp` object on a text and all pipeline components are applied to the `Doc` in order. Both [`__call__`](/api/textcategorizer#call) and [`pipe`](/api/textcategorizer#pipe) delegate to the [`predict`](/api/textcategorizer#predict) and [`set_annotations`](/api/textcategorizer#set_annotations) methods. > #### Example > > ```python > textcat = TextCategorizer(nlp.vocab) > doc = nlp(u"This is a sentence.") > # This usually happens under the hood > processed = textcat(doc) > ``` | Name | Type | Description | | ----------- | ----- | ------------------------ | | `doc` | `Doc` | The document to process. | | **RETURNS** | `Doc` | The processed document. | ## TextCategorizer.pipe {#pipe tag="method"} Apply the pipe to a stream of documents. Both [`__call__`](/api/textcategorizer#call) and [`pipe`](/api/textcategorizer#pipe) delegate to the [`predict`](/api/textcategorizer#predict) and [`set_annotations`](/api/textcategorizer#set_annotations) methods. > #### Example > > ```python > texts = [u"One doc", u"...", u"Lots of docs"] > textcat = TextCategorizer(nlp.vocab) > for doc in textcat.pipe(texts, batch_size=50): > pass > ``` | Name | Type | Description | | ------------ | -------- | ------------------------------------------------------ | | `stream` | iterable | A stream of documents. | | `batch_size` | int | The number of texts to buffer. Defaults to `128`. | | **YIELDS** | `Doc` | Processed documents in the order of the original text. | ## TextCategorizer.predict {#predict tag="method"} Apply the pipeline's model to a batch of docs, without modifying them. > #### Example > > ```python > textcat = TextCategorizer(nlp.vocab) > scores = textcat.predict([doc1, doc2]) > ``` | Name | Type | Description | | ----------- | -------- | ------------------------- | | `docs` | iterable | The documents to predict. | | **RETURNS** | - | Scores from the model. | ## TextCategorizer.set_annotations {#set_annotations tag="method"} Modify a batch of documents, using pre-computed scores. > #### Example > > ```python > textcat = TextCategorizer(nlp.vocab) > scores = textcat.predict([doc1, doc2]) > textcat.set_annotations([doc1, doc2], scores) > ``` | Name | Type | Description | | -------- | -------- | --------------------------------------------------------- | | `docs` | iterable | The documents to modify. | | `scores` | - | The scores to set, produced by `TextCategorizer.predict`. | ## TextCategorizer.update {#update tag="method"} Learn from a batch of documents and gold-standard information, updating the pipe's model. Delegates to [`predict`](/api/textcategorizer#predict) and [`get_loss`](/api/textcategorizer#get_loss). > #### Example > > ```python > textcat = TextCategorizer(nlp.vocab) > losses = {} > optimizer = nlp.begin_training() > textcat.update([doc1, doc2], [gold1, gold2], losses=losses, sgd=optimizer) > ``` | Name | Type | Description | | -------- | -------- | -------------------------------------------------------------------------------------------- | | `docs` | iterable | A batch of documents to learn from. | | `golds` | iterable | The gold-standard data. Must have the same length as `docs`. | | `drop` | float | The dropout rate. | | `sgd` | callable | The optimizer. Should take two arguments `weights` and `gradient`, and an optional ID. | | `losses` | dict | Optional record of the loss during training. The value keyed by the model's name is updated. | ## TextCategorizer.get_loss {#get_loss tag="method"} Find the loss and gradient of loss for the batch of documents and their predicted scores. > #### Example > > ```python > textcat = TextCategorizer(nlp.vocab) > scores = textcat.predict([doc1, doc2]) > loss, d_loss = textcat.get_loss([doc1, doc2], [gold1, gold2], scores) > ``` | Name | Type | Description | | ----------- | -------- | ------------------------------------------------------------ | | `docs` | iterable | The batch of documents. | | `golds` | iterable | The gold-standard data. Must have the same length as `docs`. | | `scores` | - | Scores representing the model's predictions. | | **RETURNS** | tuple | The loss and the gradient, i.e. `(loss, gradient)`. | ## TextCategorizer.begin_training {#begin_training tag="method"} Initialize the pipe for training, using data examples if available. If no model has been initialized yet, the model is added. > #### Example > > ```python > textcat = TextCategorizer(nlp.vocab) > nlp.pipeline.append(textcat) > optimizer = textcat.begin_training(pipeline=nlp.pipeline) > ``` | Name | Type | Description | | ------------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `gold_tuples` | iterable | Optional gold-standard annotations from which to construct [`GoldParse`](/api/goldparse) objects. | | `pipeline` | list | Optional list of pipeline components that this component is part of. | | `sgd` | callable | An optional optimizer. Should take two arguments `weights` and `gradient`, and an optional ID. Will be created via [`TextCategorizer`](/api/textcategorizer#create_optimizer) if not set. | | **RETURNS** | callable | An optimizer. | ## TextCategorizer.create_optimizer {#create_optimizer tag="method"} Create an optimizer for the pipeline component. > #### Example > > ```python > textcat = TextCategorizer(nlp.vocab) > optimizer = textcat.create_optimizer() > ``` | Name | Type | Description | | ----------- | -------- | -------------- | | **RETURNS** | callable | The optimizer. | ## TextCategorizer.use_params {#use_params tag="method, contextmanager"} Modify the pipe's model, to use the given parameter values. > #### Example > > ```python > textcat = TextCategorizer(nlp.vocab) > with textcat.use_params(): > textcat.to_disk('/best_model') > ``` | Name | Type | Description | | -------- | ---- | ---------------------------------------------------------------------------------------------------------- | | `params` | - | The parameter values to use in the model. At the end of the context, the original parameters are restored. | ## TextCategorizer.add_label {#add_label tag="method"} Add a new label to the pipe. > #### Example > > ```python > textcat = TextCategorizer(nlp.vocab) > textcat.add_label('MY_LABEL') > ``` | Name | Type | Description | | ------- | ------- | ----------------- | | `label` | unicode | The label to add. | ## TextCategorizer.to_disk {#to_disk tag="method"} Serialize the pipe to disk. > #### Example > > ```python > textcat = TextCategorizer(nlp.vocab) > textcat.to_disk('/path/to/textcat') > ``` | Name | Type | Description | | ------ | ---------------- | --------------------------------------------------------------------------------------------------------------------- | | `path` | unicode / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. | ## TextCategorizer.from_disk {#from_disk tag="method"} Load the pipe from disk. Modifies the object in place and returns it. > #### Example > > ```python > textcat = TextCategorizer(nlp.vocab) > textcat.from_disk('/path/to/textcat') > ``` | Name | Type | Description | | ----------- | ----------------- | -------------------------------------------------------------------------- | | `path` | unicode / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. | | **RETURNS** | `TextCategorizer` | The modified `TextCategorizer` object. | ## TextCategorizer.to_bytes {#to_bytes tag="method"} > #### example > > ```python > textcat = TextCategorizer(nlp.vocab) > textcat_bytes = textcat.to_bytes() > ``` Serialize the pipe to a bytestring. | Name | Type | Description | | ----------- | ----- | ---------------------------------------------------- | | `**exclude` | - | Named attributes to prevent from being serialized. | | **RETURNS** | bytes | The serialized form of the `TextCategorizer` object. | ## TextCategorizer.from_bytes {#from_bytes tag="method"} Load the pipe from a bytestring. Modifies the object in place and returns it. > #### Example > > ```python > textcat_bytes = textcat.to_bytes() > textcat = TextCategorizer(nlp.vocab) > textcat.from_bytes(textcat_bytes) > ``` | Name | Type | Description | | ------------ | ----------------- | ---------------------------------------------- | | `bytes_data` | bytes | The data to load from. | | `**exclude` | - | Named attributes to prevent from being loaded. | | **RETURNS** | `TextCategorizer` | The `TextCategorizer` object. | ## TextCategorizer.labels {#labels tag="property"} The labels currently added to the component. > #### Example > > ```python > textcat.add_label("MY_LABEL") > assert "MY_LABEL" in textcat.labels > ``` | Name | Type | Description | | ----------- | ----- | ---------------------------------- | | **RETURNS** | tuple | The labels added to the component. |