import numpy import pytest from spacy import displacy from spacy.displacy.render import DependencyRenderer, EntityRenderer from spacy.lang.en import English from spacy.lang.fa import Persian from spacy.tokens import Span, Doc @pytest.mark.issue(2361) def test_issue2361(de_vocab): """Test if < is escaped when rendering""" chars = ("<", ">", "&", """) words = ["<", ">", "&", '"'] doc = Doc(de_vocab, words=words, deps=["dep"] * len(words)) html = displacy.render(doc) for char in chars: assert char in html @pytest.mark.issue(2728) def test_issue2728(en_vocab): """Test that displaCy ENT visualizer escapes HTML correctly.""" doc = Doc(en_vocab, words=["test", "<RELEASE>", "test"]) doc.ents = [Span(doc, 0, 1, label="TEST")] html = displacy.render(doc, style="ent") assert "<RELEASE>" in html doc.ents = [Span(doc, 1, 2, label="TEST")] html = displacy.render(doc, style="ent") assert "<RELEASE>" in html @pytest.mark.issue(3288) def test_issue3288(en_vocab): """Test that retokenization works correctly via displaCy when punctuation is merged onto the preceeding token and tensor is resized.""" words = ["Hello", "World", "!", "When", "is", "this", "breaking", "?"] heads = [1, 1, 1, 4, 4, 6, 4, 4] deps = ["intj", "ROOT", "punct", "advmod", "ROOT", "det", "nsubj", "punct"] doc = Doc(en_vocab, words=words, heads=heads, deps=deps) doc.tensor = numpy.zeros((len(words), 96), dtype="float32") displacy.render(doc) @pytest.mark.issue(3531) def test_issue3531(): """Test that displaCy renderer doesn't require "settings" key.""" example_dep = { "words": [ {"text": "But", "tag": "CCONJ"}, {"text": "Google", "tag": "PROPN"}, {"text": "is", "tag": "VERB"}, {"text": "starting", "tag": "VERB"}, {"text": "from", "tag": "ADP"}, {"text": "behind.", "tag": "ADV"}, ], "arcs": [ {"start": 0, "end": 3, "label": "cc", "dir": "left"}, {"start": 1, "end": 3, "label": "nsubj", "dir": "left"}, {"start": 2, "end": 3, "label": "aux", "dir": "left"}, {"start": 3, "end": 4, "label": "prep", "dir": "right"}, {"start": 4, "end": 5, "label": "pcomp", "dir": "right"}, ], } example_ent = { "text": "But Google is starting from behind.", "ents": [{"start": 4, "end": 10, "label": "ORG"}], } dep_html = displacy.render(example_dep, style="dep", manual=True) assert dep_html ent_html = displacy.render(example_ent, style="ent", manual=True) assert ent_html @pytest.mark.issue(3882) def test_issue3882(en_vocab): """Test that displaCy doesn't serialize the doc.user_data when making a copy of the Doc. """ doc = Doc(en_vocab, words=["Hello", "world"], deps=["dep", "dep"]) doc.user_data["test"] = set() displacy.parse_deps(doc) @pytest.mark.issue(5447) def test_issue5447(): """Test that overlapping arcs get separate levels, unless they're identical.""" renderer = DependencyRenderer() words = [ {"text": "This", "tag": "DT"}, {"text": "is", "tag": "VBZ"}, {"text": "a", "tag": "DT"}, {"text": "sentence.", "tag": "NN"}, ] arcs = [ {"start": 0, "end": 1, "label": "nsubj", "dir": "left"}, {"start": 2, "end": 3, "label": "det", "dir": "left"}, {"start": 2, "end": 3, "label": "overlap", "dir": "left"}, {"end": 3, "label": "overlap", "start": 2, "dir": "left"}, {"start": 1, "end": 3, "label": "attr", "dir": "left"}, ] renderer.render([{"words": words, "arcs": arcs}]) assert renderer.highest_level == 3 @pytest.mark.issue(5838) def test_issue5838(): # Displacy's EntityRenderer break line # not working after last entity sample_text = "First line\nSecond line, with ent\nThird line\nFourth line\n" nlp = English() doc = nlp(sample_text) doc.ents = [Span(doc, 7, 8, label="test")] html = displacy.render(doc, style="ent") found = html.count("</br>") assert found == 4 def test_displacy_parse_spans(en_vocab): """Test that spans on a Doc are converted into displaCy's format.""" doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"]) doc.spans["sc"] = [Span(doc, 3, 6, "ORG"), Span(doc, 5, 6, "GPE")] spans = displacy.parse_spans(doc) assert isinstance(spans, dict) assert spans["text"] == "Welcome to the Bank of China " assert spans["spans"] == [ { "start": 15, "end": 28, "start_token": 3, "end_token": 6, "label": "ORG", "kb_id": "", "kb_url": "#", }, { "start": 23, "end": 28, "start_token": 5, "end_token": 6, "label": "GPE", "kb_id": "", "kb_url": "#", }, ] def test_displacy_parse_spans_with_kb_id_options(en_vocab): """Test that spans with kb_id on a Doc are converted into displaCy's format""" doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"]) doc.spans["sc"] = [ Span(doc, 3, 6, "ORG", kb_id="Q790068"), Span(doc, 5, 6, "GPE", kb_id="Q148"), ] spans = displacy.parse_spans( doc, {"kb_url_template": "https://wikidata.org/wiki/{}"} ) assert isinstance(spans, dict) assert spans["text"] == "Welcome to the Bank of China " assert spans["spans"] == [ { "start": 15, "end": 28, "start_token": 3, "end_token": 6, "label": "ORG", "kb_id": "Q790068", "kb_url": "https://wikidata.org/wiki/Q790068", }, { "start": 23, "end": 28, "start_token": 5, "end_token": 6, "label": "GPE", "kb_id": "Q148", "kb_url": "https://wikidata.org/wiki/Q148", }, ] def test_displacy_parse_spans_different_spans_key(en_vocab): """Test that spans in a different spans key will be parsed""" doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"]) doc.spans["sc"] = [Span(doc, 3, 6, "ORG"), Span(doc, 5, 6, "GPE")] doc.spans["custom"] = [Span(doc, 3, 6, "BANK")] spans = displacy.parse_spans(doc, options={"spans_key": "custom"}) assert isinstance(spans, dict) assert spans["text"] == "Welcome to the Bank of China " assert spans["spans"] == [ { "start": 15, "end": 28, "start_token": 3, "end_token": 6, "label": "BANK", "kb_id": "", "kb_url": "#", } ] def test_displacy_parse_ents(en_vocab): """Test that named entities on a Doc are converted into displaCy's format.""" doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"]) doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])] ents = displacy.parse_ents(doc) assert isinstance(ents, dict) assert ents["text"] == "But Google is starting from behind " assert ents["ents"] == [ {"start": 4, "end": 10, "label": "ORG", "kb_id": "", "kb_url": "#"} ] doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"], kb_id="Q95")] ents = displacy.parse_ents(doc) assert isinstance(ents, dict) assert ents["text"] == "But Google is starting from behind " assert ents["ents"] == [ {"start": 4, "end": 10, "label": "ORG", "kb_id": "Q95", "kb_url": "#"} ] def test_displacy_parse_ents_with_kb_id_options(en_vocab): """Test that named entities with kb_id on a Doc are converted into displaCy's format.""" doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"]) doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"], kb_id="Q95")] ents = displacy.parse_ents( doc, {"kb_url_template": "https://www.wikidata.org/wiki/{}"} ) assert isinstance(ents, dict) assert ents["text"] == "But Google is starting from behind " assert ents["ents"] == [ { "start": 4, "end": 10, "label": "ORG", "kb_id": "Q95", "kb_url": "https://www.wikidata.org/wiki/Q95", } ] def test_displacy_parse_deps(en_vocab): """Test that deps and tags on a Doc are converted into displaCy's format.""" words = ["This", "is", "a", "sentence"] heads = [1, 1, 3, 1] pos = ["DET", "VERB", "DET", "NOUN"] tags = ["DT", "VBZ", "DT", "NN"] deps = ["nsubj", "ROOT", "det", "attr"] doc = Doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps) deps = displacy.parse_deps(doc) assert isinstance(deps, dict) assert deps["words"] == [ {"lemma": None, "text": words[0], "tag": pos[0]}, {"lemma": None, "text": words[1], "tag": pos[1]}, {"lemma": None, "text": words[2], "tag": pos[2]}, {"lemma": None, "text": words[3], "tag": pos[3]}, ] assert deps["arcs"] == [ {"start": 0, "end": 1, "label": "nsubj", "dir": "left"}, {"start": 2, "end": 3, "label": "det", "dir": "left"}, {"start": 1, "end": 3, "label": "attr", "dir": "right"}, ] def test_displacy_invalid_arcs(): renderer = DependencyRenderer() words = [{"text": "This", "tag": "DET"}, {"text": "is", "tag": "VERB"}] arcs = [ {"start": 0, "end": 1, "label": "nsubj", "dir": "left"}, {"start": -1, "end": 2, "label": "det", "dir": "left"}, ] with pytest.raises(ValueError): renderer.render([{"words": words, "arcs": arcs}]) def test_displacy_spans(en_vocab): """Test that displaCy can render Spans.""" doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"]) doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])] html = displacy.render(doc[1:4], style="ent") assert html.startswith("<div") def test_displacy_raises_for_wrong_type(en_vocab): with pytest.raises(ValueError): displacy.render("hello world") def test_displacy_rtl(): # Source: http://www.sobhe.ir/hazm/ – is this correct? words = ["ما", "بسیار", "کتاب", "می\u200cخوانیم"] # These are (likely) wrong, but it's just for testing pos = ["PRO", "ADV", "N_PL", "V_SUB"] # needs to match lang.fa.tag_map deps = ["foo", "bar", "foo", "baz"] heads = [1, 0, 3, 1] nlp = Persian() doc = Doc(nlp.vocab, words=words, tags=pos, heads=heads, deps=deps) doc.ents = [Span(doc, 1, 3, label="TEST")] html = displacy.render(doc, page=True, style="dep") assert "direction: rtl" in html assert 'direction="rtl"' in html assert f'lang="{nlp.lang}"' in html html = displacy.render(doc, page=True, style="ent") assert "direction: rtl" in html assert f'lang="{nlp.lang}"' in html def test_displacy_render_wrapper(en_vocab): """Test that displaCy accepts custom rendering wrapper.""" def wrapper(html): return "TEST" + html + "TEST" displacy.set_render_wrapper(wrapper) doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"]) doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])] html = displacy.render(doc, style="ent") assert html.startswith("TEST<div") assert html.endswith("/div>TEST") # Restore displacy.set_render_wrapper(lambda html: html) def test_displacy_options_case(): ents = ["foo", "BAR"] colors = {"FOO": "red", "bar": "green"} renderer = EntityRenderer({"ents": ents, "colors": colors}) text = "abcd" labels = ["foo", "bar", "FOO", "BAR"] spans = [{"start": i, "end": i + 1, "label": labels[i]} for i in range(len(text))] result = renderer.render_ents("abcde", spans, None).split("\n\n") assert "red" in result[0] and "foo" in result[0] assert "green" in result[1] and "bar" in result[1] assert "red" in result[2] and "FOO" in result[2] assert "green" in result[3] and "BAR" in result[3] @pytest.mark.issue(10672) def test_displacy_manual_sorted_entities(): doc = { "text": "But Google is starting from behind.", "ents": [ {"start": 14, "end": 22, "label": "SECOND"}, {"start": 4, "end": 10, "label": "FIRST"}, ], "title": None, } html = displacy.render(doc, style="ent", manual=True) assert html.find("FIRST") < html.find("SECOND")