# coding: utf8
from __future__ import unicode_literals

from ...gold import iob_to_biluo


def conllubio2json(input_data, n_sents=10, use_morphology=False, lang=None):
    """
    Convert conllu files into JSON format for use with train cli.
    use_morphology parameter enables appending morphology to tags, which is
    useful for languages such as Spanish, where UD tags are not so rich.
    """
    # by @dvsrepo, via #11 explosion/spacy-dev-resources
    docs = []
    sentences = []
    conll_tuples = read_conllx(input_data, use_morphology=use_morphology)
    for i, (raw_text, tokens) in enumerate(conll_tuples):
        sentence, brackets = tokens[0]
        sentences.append(generate_sentence(sentence))
        # Real-sized documents could be extracted using the comments on the
        # conluu document
        if len(sentences) % n_sents == 0:
            doc = create_doc(sentences, i)
            docs.append(doc)
            sentences = []
    return docs


def read_conllx(input_data, use_morphology=False, n=0):
    i = 0
    for sent in input_data.strip().split("\n\n"):
        lines = sent.strip().split("\n")
        if lines:
            while lines[0].startswith("#"):
                lines.pop(0)
            tokens = []
            for line in lines:

                parts = line.split("\t")
                id_, word, lemma, pos, tag, morph, head, dep, _1, ner = parts
                if "-" in id_ or "." in id_:
                    continue
                try:
                    id_ = int(id_) - 1
                    head = (int(head) - 1) if head != "0" else id_
                    dep = "ROOT" if dep == "root" else dep
                    tag = pos if tag == "_" else tag
                    tag = tag + "__" + morph if use_morphology else tag
                    ner = ner if ner else "O"
                    tokens.append((id_, word, tag, head, dep, ner))
                except:  # noqa: E722
                    print(line)
                    raise
            tuples = [list(t) for t in zip(*tokens)]
            yield (None, [[tuples, []]])
            i += 1
            if n >= 1 and i >= n:
                break


def generate_sentence(sent):
    (id_, word, tag, head, dep, ner) = sent
    sentence = {}
    tokens = []
    ner = iob_to_biluo(ner)
    for i, id in enumerate(id_):
        token = {}
        token["orth"] = word[i]
        token["tag"] = tag[i]
        token["head"] = head[i] - id
        token["dep"] = dep[i]
        token["ner"] = ner[i]
        tokens.append(token)
    sentence["tokens"] = tokens
    return sentence


def create_doc(sentences, id):
    doc = {}
    paragraph = {}
    doc["id"] = id
    doc["paragraphs"] = []
    paragraph["sentences"] = sentences
    doc["paragraphs"].append(paragraph)
    return doc