--- title: Span tag: class source: spacy/tokens/span.pyx --- A slice from a [`Doc`](/api/doc) object. ## Span.\_\_init\_\_ {#init tag="method"} Create a Span object from the slice `doc[start : end]`. > #### Example > > ```python > doc = nlp("Give it back! He pleaded.") > span = doc[1:4] > assert [t.text for t in span] == ["it", "back", "!"] > ``` | Name | Type | Description | | -------- | ---------------------------------------- | --------------------------------------------------------------------------------------------------------- | | `doc` | `Doc` | The parent document. | | `start` | int | The index of the first token of the span. | | `end` | int | The index of the first token after the span. | | `label` | int / str | A label to attach to the span, e.g. for named entities. As of v2.1, the label can also be a string. | | `kb_id` | int / str | A knowledge base ID to attach to the span, e.g. for named entities. The ID can be an integer or a string. | | `vector` | `numpy.ndarray[ndim=1, dtype="float32"]` | A meaning representation of the span. | ## Span.\_\_getitem\_\_ {#getitem tag="method"} Get a `Token` object. > #### Example > > ```python > doc = nlp("Give it back! He pleaded.") > span = doc[1:4] > assert span[1].text == "back" > ``` | Name | Type | Description | | ----------- | ------- | --------------------------------------- | | `i` | int | The index of the token within the span. | | **RETURNS** | `Token` | The token at `span[i]`. | Get a `Span` object. > #### Example > > ```python > doc = nlp("Give it back! He pleaded.") > span = doc[1:4] > assert span[1:3].text == "back!" > ``` | Name | Type | Description | | ----------- | ------ | -------------------------------- | | `start_end` | tuple | The slice of the span to get. | | **RETURNS** | `Span` | The span at `span[start : end]`. | ## Span.\_\_iter\_\_ {#iter tag="method"} Iterate over `Token` objects. > #### Example > > ```python > doc = nlp("Give it back! He pleaded.") > span = doc[1:4] > assert [t.text for t in span] == ["it", "back", "!"] > ``` | Name | Type | Description | | ---------- | ------- | ----------------- | | **YIELDS** | `Token` | A `Token` object. | ## Span.\_\_len\_\_ {#len tag="method"} Get the number of tokens in the span. > #### Example > > ```python > doc = nlp("Give it back! He pleaded.") > span = doc[1:4] > assert len(span) == 3 > ``` | Name | Type | Description | | ----------- | ---- | --------------------------------- | | **RETURNS** | int | The number of tokens in the span. | ## Span.set_extension {#set_extension tag="classmethod" new="2"} Define a custom attribute on the `Span` which becomes available via `Span._`. For details, see the documentation on [custom attributes](/usage/processing-pipelines#custom-components-attributes). > #### Example > > ```python > from spacy.tokens import Span > city_getter = lambda span: any(city in span.text for city in ("New York", "Paris", "Berlin")) > Span.set_extension("has_city", getter=city_getter) > doc = nlp("I like New York in Autumn") > assert doc[1:4]._.has_city > ``` | Name | Type | Description | | --------- | -------- | ------------------------------------------------------------------------------------------------------------------------------------- | | `name` | str | Name of the attribute to set by the extension. For example, `"my_attr"` will be available as `span._.my_attr`. | | `default` | - | Optional default value of the attribute if no getter or method is defined. | | `method` | callable | Set a custom method on the object, for example `span._.compare(other_span)`. | | `getter` | callable | Getter function that takes the object and returns an attribute value. Is called when the user accesses the `._` attribute. | | `setter` | callable | Setter function that takes the `Span` and a value, and modifies the object. Is called when the user writes to the `Span._` attribute. | | `force` | bool | Force overwriting existing attribute. | ## Span.get_extension {#get_extension tag="classmethod" new="2"} Look up a previously registered extension by name. Returns a 4-tuple `(default, method, getter, setter)` if the extension is registered. Raises a `KeyError` otherwise. > #### Example > > ```python > from spacy.tokens import Span > Span.set_extension("is_city", default=False) > extension = Span.get_extension("is_city") > assert extension == (False, None, None, None) > ``` | Name | Type | Description | | ----------- | ----- | ------------------------------------------------------------- | | `name` | str | Name of the extension. | | **RETURNS** | tuple | A `(default, method, getter, setter)` tuple of the extension. | ## Span.has_extension {#has_extension tag="classmethod" new="2"} Check whether an extension has been registered on the `Span` class. > #### Example > > ```python > from spacy.tokens import Span > Span.set_extension("is_city", default=False) > assert Span.has_extension("is_city") > ``` | Name | Type | Description | | ----------- | ---- | ------------------------------------------ | | `name` | str | Name of the extension to check. | | **RETURNS** | bool | Whether the extension has been registered. | ## Span.remove_extension {#remove_extension tag="classmethod" new="2.0.12"} Remove a previously registered extension. > #### Example > > ```python > from spacy.tokens import Span > Span.set_extension("is_city", default=False) > removed = Span.remove_extension("is_city") > assert not Span.has_extension("is_city") > ``` | Name | Type | Description | | ----------- | ----- | --------------------------------------------------------------------- | | `name` | str | Name of the extension. | | **RETURNS** | tuple | A `(default, method, getter, setter)` tuple of the removed extension. | ## Span.char_span {#char_span tag="method" new="2.2.4"} Create a `Span` object from the slice `span.text[start:end]`. Returns `None` if the character indices don't map to a valid span. > #### Example > > ```python > doc = nlp("I like New York") > span = doc[1:4].char_span(5, 13, label="GPE") > assert span.text == "New York" > ``` | Name | Type | Description | | ----------- | ---------------------------------------- | --------------------------------------------------------------------- | | `start` | int | The index of the first character of the span. | | `end` | int | The index of the last character after the span. | | `label` | uint64 / str | A label to attach to the span, e.g. for named entities. | | `kb_id` | uint64 / str | An ID from a knowledge base to capture the meaning of a named entity. | | `vector` | `numpy.ndarray[ndim=1, dtype="float32"]` | A meaning representation of the span. | | **RETURNS** | `Span` | The newly constructed object or `None`. | ## Span.similarity {#similarity tag="method" model="vectors"} Make a semantic similarity estimate. The default estimate is cosine similarity using an average of word vectors. > #### Example > > ```python > doc = nlp("green apples and red oranges") > green_apples = doc[:2] > red_oranges = doc[3:] > apples_oranges = green_apples.similarity(red_oranges) > oranges_apples = red_oranges.similarity(green_apples) > assert apples_oranges == oranges_apples > ``` | Name | Type | Description | | ----------- | ----- | -------------------------------------------------------------------------------------------- | | `other` | - | The object to compare with. By default, accepts `Doc`, `Span`, `Token` and `Lexeme` objects. | | **RETURNS** | float | A scalar similarity score. Higher is more similar. | ## Span.get_lca_matrix {#get_lca_matrix tag="method"} Calculates the lowest common ancestor matrix for a given `Span`. Returns LCA matrix containing the integer index of the ancestor, or `-1` if no common ancestor is found, e.g. if span excludes a necessary ancestor. > #### Example > > ```python > doc = nlp("I like New York in Autumn") > span = doc[1:4] > matrix = span.get_lca_matrix() > # array([[0, 0, 0], [0, 1, 2], [0, 2, 2]], dtype=int32) > ``` | Name | Type | Description | | ----------- | -------------------------------------- | ------------------------------------------------ | | **RETURNS** | `numpy.ndarray[ndim=2, dtype="int32"]` | The lowest common ancestor matrix of the `Span`. | ## Span.to_array {#to_array tag="method" new="2"} Given a list of `M` attribute IDs, export the tokens to a numpy `ndarray` of shape `(N, M)`, where `N` is the length of the document. The values will be 32-bit integers. > #### Example > > ```python > from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA > doc = nlp("I like New York in Autumn.") > span = doc[2:3] > # All strings mapped to integers, for easy export to numpy > np_array = span.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA]) > ``` | Name | Type | Description | | ----------- | ----------------------------- | -------------------------------------------------------------------------------------------------------- | | `attr_ids` | list | A list of attribute ID ints. | | **RETURNS** | `numpy.ndarray[long, ndim=2]` | A feature matrix, with one row per word, and one column per attribute indicated in the input `attr_ids`. | ## Span.ents {#ents tag="property" new="2.0.13" model="ner"} The named entities in the span. Returns a tuple of named entity `Span` objects, if the entity recognizer has been applied. > #### Example > > ```python > doc = nlp("Mr. Best flew to New York on Saturday morning.") > span = doc[0:6] > ents = list(span.ents) > assert ents[0].label == 346 > assert ents[0].label_ == "PERSON" > assert ents[0].text == "Mr. Best" > ``` | Name | Type | Description | | ----------- | ----- | -------------------------------------------- | | **RETURNS** | tuple | Entities in the span, one `Span` per entity. | ## Span.as_doc {#as_doc tag="method"} Create a new `Doc` object corresponding to the `Span`, with a copy of the data. > #### Example > > ```python > doc = nlp("I like New York in Autumn.") > span = doc[2:4] > doc2 = span.as_doc() > assert doc2.text == "New York" > ``` | Name | Type | Description | | ---------------- | ----- | ---------------------------------------------------- | | `copy_user_data` | bool | Whether or not to copy the original doc's user data. | | **RETURNS** | `Doc` | A `Doc` object of the `Span`'s content. | ## Span.root {#root tag="property" model="parser"} The token with the shortest path to the root of the sentence (or the root itself). If multiple tokens are equally high in the tree, the first token is taken. > #### Example > > ```python > doc = nlp("I like New York in Autumn.") > i, like, new, york, in_, autumn, dot = range(len(doc)) > assert doc[new].head.text == "York" > assert doc[york].head.text == "like" > new_york = doc[new:york+1] > assert new_york.root.text == "York" > ``` | Name | Type | Description | | ----------- | ------- | --------------- | | **RETURNS** | `Token` | The root token. | ## Span.conjuncts {#conjuncts tag="property" model="parser"} A tuple of tokens coordinated to `span.root`. > #### Example > > ```python > doc = nlp("I like apples and oranges") > apples_conjuncts = doc[2:3].conjuncts > assert [t.text for t in apples_conjuncts] == ["oranges"] > ``` | Name | Type | Description | | ----------- | ------- | ----------------------- | | **RETURNS** | `tuple` | The coordinated tokens. | ## Span.lefts {#lefts tag="property" model="parser"} Tokens that are to the left of the span, whose heads are within the span. > #### Example > > ```python > doc = nlp("I like New York in Autumn.") > lefts = [t.text for t in doc[3:7].lefts] > assert lefts == ["New"] > ``` | Name | Type | Description | | ---------- | ------- | ------------------------------------ | | **YIELDS** | `Token` | A left-child of a token of the span. | ## Span.rights {#rights tag="property" model="parser"} Tokens that are to the right of the span, whose heads are within the span. > #### Example > > ```python > doc = nlp("I like New York in Autumn.") > rights = [t.text for t in doc[2:4].rights] > assert rights == ["in"] > ``` | Name | Type | Description | | ---------- | ------- | ------------------------------------- | | **YIELDS** | `Token` | A right-child of a token of the span. | ## Span.n_lefts {#n_lefts tag="property" model="parser"} The number of tokens that are to the left of the span, whose heads are within the span. > #### Example > > ```python > doc = nlp("I like New York in Autumn.") > assert doc[3:7].n_lefts == 1 > ``` | Name | Type | Description | | ----------- | ---- | -------------------------------- | | **RETURNS** | int | The number of left-child tokens. | ## Span.n_rights {#n_rights tag="property" model="parser"} The number of tokens that are to the right of the span, whose heads are within the span. > #### Example > > ```python > doc = nlp("I like New York in Autumn.") > assert doc[2:4].n_rights == 1 > ``` | Name | Type | Description | | ----------- | ---- | --------------------------------- | | **RETURNS** | int | The number of right-child tokens. | ## Span.subtree {#subtree tag="property" model="parser"} Tokens within the span and tokens which descend from them. > #### Example > > ```python > doc = nlp("Give it back! He pleaded.") > subtree = [t.text for t in doc[:3].subtree] > assert subtree == ["Give", "it", "back", "!"] > ``` | Name | Type | Description | | ---------- | ------- | ------------------------------------------------- | | **YIELDS** | `Token` | A token within the span, or a descendant from it. | ## Span.has_vector {#has_vector tag="property" model="vectors"} A boolean value indicating whether a word vector is associated with the object. > #### Example > > ```python > doc = nlp("I like apples") > assert doc[1:].has_vector > ``` | Name | Type | Description | | ----------- | ---- | -------------------------------------------- | | **RETURNS** | bool | Whether the span has a vector data attached. | ## Span.vector {#vector tag="property" model="vectors"} A real-valued meaning representation. Defaults to an average of the token vectors. > #### Example > > ```python > doc = nlp("I like apples") > assert doc[1:].vector.dtype == "float32" > assert doc[1:].vector.shape == (300,) > ``` | Name | Type | Description | | ----------- | ---------------------------------------- | --------------------------------------------------- | | **RETURNS** | `numpy.ndarray[ndim=1, dtype="float32"]` | A 1D numpy array representing the span's semantics. | ## Span.vector_norm {#vector_norm tag="property" model="vectors"} The L2 norm of the span's vector representation. > #### Example > > ```python > doc = nlp("I like apples") > doc[1:].vector_norm # 4.800883928527915 > doc[2:].vector_norm # 6.895897646384268 > assert doc[1:].vector_norm != doc[2:].vector_norm > ``` | Name | Type | Description | | ----------- | ----- | ----------------------------------------- | | **RETURNS** | float | The L2 norm of the vector representation. | ## Attributes {#attributes} | Name | Type | Description | | --------------------------------------- | ------------ | -------------------------------------------------------------------------------------------------------------- | | `doc` | `Doc` | The parent document. | | `tensor` 2.1.7 | `ndarray` | The span's slice of the parent `Doc`'s tensor. | | `sent` | `Span` | The sentence span that this span is a part of. | | `start` | int | The token offset for the start of the span. | | `end` | int | The token offset for the end of the span. | | `start_char` | int | The character offset for the start of the span. | | `end_char` | int | The character offset for the end of the span. | | `text` | str | A string representation of the span text. | | `text_with_ws` | str | The text content of the span with a trailing whitespace character if the last token has one. | | `orth` | int | ID of the verbatim text content. | | `orth_` | str | Verbatim text content (identical to `Span.text`). Exists mostly for consistency with the other attributes. | | `label` | int | The hash value of the span's label. | | `label_` | str | The span's label. | | `lemma_` | str | The span's lemma. | | `kb_id` | int | The hash value of the knowledge base ID referred to by the span. | | `kb_id_` | str | The knowledge base ID referred to by the span. | | `ent_id` | int | The hash value of the named entity the token is an instance of. | | `ent_id_` | str | The string ID of the named entity the token is an instance of. | | `sentiment` | float | A scalar value indicating the positivity or negativity of the span. | | `_` | `Underscore` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). |