# coding: utf-8 from __future__ import unicode_literals """ Demonstrate how to build a knowledge base from WikiData and run an Entity Linking algorithm. """ import re import csv import json import spacy import datetime import bz2 from spacy.kb import KnowledgeBase from spacy.vocab import Vocab # requires: pip install neuralcoref --no-binary neuralcoref # import neuralcoref # TODO: remove hardcoded paths WIKIDATA_JSON = 'C:/Users/Sofie/Documents/data/wikidata/wikidata-20190304-all.json.bz2' ENWIKI_DUMP = 'C:/Users/Sofie/Documents/data/wikipedia/enwiki-20190320-pages-articles-multistream.xml.bz2' ENWIKI_INDEX = 'C:/Users/Sofie/Documents/data/wikipedia/enwiki-20190320-pages-articles-multistream-index.txt.bz2' PRIOR_PROB = 'C:/Users/Sofie/Documents/data/wikipedia/prior_prob.csv' ENTITY_COUNTS = 'C:/Users/Sofie/Documents/data/wikipedia/entity_freq.csv' ENTITY_DEFS = 'C:/Users/Sofie/Documents/data/wikipedia/entity_defs.csv' KB_FILE = 'C:/Users/Sofie/Documents/data/wikipedia/kb' VOCAB_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/vocab' TRAINING_OUTPUT_SET_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/training_nel/' TRAINING_INPUT_SET_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/training_nel_sample_3may2019/' # these will/should be matched ignoring case wiki_namespaces = ["b", "betawikiversity", "Book", "c", "Category", "Commons", "d", "dbdump", "download", "Draft", "Education", "Foundation", "Gadget", "Gadget definition", "gerrit", "File", "Help", "Image", "Incubator", "m", "mail", "mailarchive", "media", "MediaWiki", "MediaWiki talk", "Mediawikiwiki", "MediaZilla", "Meta", "Metawikipedia", "Module", "mw", "n", "nost", "oldwikisource", "outreach", "outreachwiki", "otrs", "OTRSwiki", "Portal", "phab", "Phabricator", "Project", "q", "quality", "rev", "s", "spcom", "Special", "species", "Strategy", "sulutil", "svn", "Talk", "Template", "Template talk", "Testwiki", "ticket", "TimedText", "Toollabs", "tools", "tswiki", "User", "User talk", "v", "voy", "w", "Wikibooks", "Wikidata", "wikiHow", "Wikinvest", "wikilivres", "Wikimedia", "Wikinews", "Wikipedia", "Wikipedia talk", "Wikiquote", "Wikisource", "Wikispecies", "Wikitech", "Wikiversity", "Wikivoyage", "wikt", "wiktionary", "wmf", "wmania", "WP"] map_alias_to_link = dict() def read_wikipedia_prior_probs(): """ STEP 1: Read the XML wikipedia data and parse out intra-wiki links to estimate prior probabilities The full file takes about 2h to parse 1100M lines (update printed every 5M lines). It works relatively fast because we don't care about which article we parsed the interwiki from, we just process line by line. """ with bz2.open(ENWIKI_DUMP, mode='rb') as file: line = file.readline() cnt = 0 while line: if cnt % 5000000 == 0: print(datetime.datetime.now(), "processed", cnt, "lines of Wikipedia dump") clean_line = line.strip().decode("utf-8") aliases, entities, normalizations = _get_wp_links(clean_line) for alias, entity, norm in zip(aliases, entities, normalizations): _store_alias(alias, entity, normalize_alias=norm, normalize_entity=True) _store_alias(alias, entity, normalize_alias=norm, normalize_entity=True) line = file.readline() cnt += 1 # write all aliases and their entities and occurrences to file with open(PRIOR_PROB, mode='w', encoding='utf8') as outputfile: outputfile.write("alias" + "|" + "count" + "|" + "entity" + "\n") for alias, alias_dict in sorted(map_alias_to_link.items(), key=lambda x: x[0]): for entity, count in sorted(alias_dict.items(), key=lambda x: x[1], reverse=True): outputfile.write(alias + "|" + str(count) + "|" + entity + "\n") # find the links link_regex = re.compile(r'\[\[[^\[\]]*\]\]') # match on interwiki links, e.g. `en:` or `:fr:` ns_regex = r":?" + "[a-z][a-z]" + ":" # match on Namespace: optionally preceded by a : for ns in wiki_namespaces: ns_regex += "|" + ":?" + ns + ":" ns_regex = re.compile(ns_regex, re.IGNORECASE) def _get_wp_links(text): aliases = [] entities = [] normalizations = [] matches = link_regex.findall(text) for match in matches: match = match[2:][:-2].replace("_", " ").strip() if ns_regex.match(match): pass # ignore namespaces at the beginning of the string # this is a simple link, with the alias the same as the mention elif "|" not in match: aliases.append(match) entities.append(match) normalizations.append(True) # in wiki format, the link is written as [[entity|alias]] else: splits = match.split("|") entity = splits[0].strip() alias = splits[1].strip() # specific wiki format [[alias (specification)|]] if len(alias) == 0 and "(" in entity: alias = entity.split("(")[0] aliases.append(alias) entities.append(entity) normalizations.append(False) else: aliases.append(alias) entities.append(entity) normalizations.append(False) return aliases, entities, normalizations def _store_alias(alias, entity, normalize_alias=False, normalize_entity=True): alias = alias.strip() entity = entity.strip() # remove everything after # as this is not part of the title but refers to a specific paragraph if normalize_entity: # wikipedia titles are always capitalized entity = _capitalize_first(entity.split("#")[0]) if normalize_alias: alias = alias.split("#")[0] if alias and entity: alias_dict = map_alias_to_link.get(alias, dict()) entity_count = alias_dict.get(entity, 0) alias_dict[entity] = entity_count + 1 map_alias_to_link[alias] = alias_dict def _capitalize_first(text): if not text: return None result = text[0].capitalize() if len(result) > 0: result += text[1:] return result def write_entity_counts(to_print=False): """ STEP 2: write entity counts """ entity_to_count = dict() total_count = 0 with open(PRIOR_PROB, mode='r', encoding='utf8') as prior_file: # skip header prior_file.readline() line = prior_file.readline() while line: splits = line.replace('\n', "").split(sep='|') # alias = splits[0] count = int(splits[1]) entity = splits[2] current_count = entity_to_count.get(entity, 0) entity_to_count[entity] = current_count + count total_count += count line = prior_file.readline() with open(ENTITY_COUNTS, mode='w', encoding='utf8') as entity_file: entity_file.write("entity" + "|" + "count" + "\n") for entity, count in entity_to_count.items(): entity_file.write(entity + "|" + str(count) + "\n") if to_print: for entity, count in entity_to_count.items(): print("Entity count:", entity, count) print("Total count:", total_count) def create_kb(vocab, max_entities_per_alias, min_occ, to_print=False, write_entity_defs=True): """ STEP 3: create the knowledge base """ kb = KnowledgeBase(vocab=vocab) print() print("1. _read_wikidata_entities", datetime.datetime.now()) print() # title_to_id = _read_wikidata_entities_regex_depr(limit=1000) title_to_id = _read_wikidata_entities_json(limit=None) # write the title-ID mapping to file if write_entity_defs: with open(ENTITY_DEFS, mode='w', encoding='utf8') as entity_file: entity_file.write("WP_title" + "|" + "WD_id" + "\n") for title, qid in title_to_id.items(): entity_file.write(title + "|" + str(qid) + "\n") title_list = list(title_to_id.keys()) entity_list = [title_to_id[x] for x in title_list] print() print("2. _get_entity_frequencies", datetime.datetime.now()) print() entity_frequencies = _get_entity_frequencies(entities=title_list) print() print("3. adding", len(entity_list), "entities", datetime.datetime.now()) print() kb.set_entities(entity_list=entity_list, prob_list=entity_frequencies, vector_list=None, feature_list=None) print() print("4. adding aliases", datetime.datetime.now()) print() _add_aliases(kb, title_to_id=title_to_id, max_entities_per_alias=max_entities_per_alias, min_occ=min_occ) # TODO: read wikipedia texts for entity context # _read_wikipedia() if to_print: print() print("kb size:", len(kb), kb.get_size_entities(), kb.get_size_aliases()) print("done with kb", datetime.datetime.now()) return kb def _get_entity_frequencies(entities): entity_to_count = dict() with open(ENTITY_COUNTS, 'r', encoding='utf8') as csvfile: csvreader = csv.reader(csvfile, delimiter='|') # skip header next(csvreader) for row in csvreader: entity_to_count[row[0]] = int(row[1]) return [entity_to_count.get(e, 0) for e in entities] def _get_entity_to_id(): entity_to_id = dict() with open(ENTITY_DEFS, 'r', encoding='utf8') as csvfile: csvreader = csv.reader(csvfile, delimiter='|') # skip header next(csvreader) for row in csvreader: entity_to_id[row[0]] = row[1] return entity_to_id def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ, to_print=False): wp_titles = title_to_id.keys() if to_print: print("wp titles:", wp_titles) # adding aliases with prior probabilities with open(PRIOR_PROB, mode='r', encoding='utf8') as prior_file: # skip header prior_file.readline() line = prior_file.readline() # we can read this file sequentially, it's sorted by alias, and then by count previous_alias = None total_count = 0 counts = list() entities = list() while line: splits = line.replace('\n', "").split(sep='|') new_alias = splits[0] count = int(splits[1]) entity = splits[2] if new_alias != previous_alias and previous_alias: # done reading the previous alias --> output if len(entities) > 0: selected_entities = list() prior_probs = list() for ent_count, ent_string in zip(counts, entities): if ent_string in wp_titles: wd_id = title_to_id[ent_string] p_entity_givenalias = ent_count / total_count selected_entities.append(wd_id) prior_probs.append(p_entity_givenalias) if selected_entities: try: kb.add_alias(alias=previous_alias, entities=selected_entities, probabilities=prior_probs) except ValueError as e: print(e) total_count = 0 counts = list() entities = list() total_count += count if len(entities) < max_entities_per_alias and count >= min_occ: counts.append(count) entities.append(entity) previous_alias = new_alias line = prior_file.readline() if to_print: print("added", kb.get_size_aliases(), "aliases:", kb.get_alias_strings()) def _read_wikidata_entities_json(limit=None, to_print=False): """ Read the JSON wiki data and parse out the entities. Takes about 7u30 to parse 55M lines. """ languages = {'en', 'de'} prop_filter = {'P31': {'Q5', 'Q15632617'}} # currently defined as OR: one property suffices to be selected site_filter = 'enwiki' title_to_id = dict() # parse appropriate fields - depending on what we need in the KB parse_properties = False parse_sitelinks = True parse_labels = False parse_descriptions = False parse_aliases = False with bz2.open(WIKIDATA_JSON, mode='rb') as file: line = file.readline() cnt = 0 while line and (not limit or cnt < limit): if cnt % 500000 == 0: print(datetime.datetime.now(), "processed", cnt, "lines of WikiData dump") clean_line = line.strip() if clean_line.endswith(b","): clean_line = clean_line[:-1] if len(clean_line) > 1: obj = json.loads(clean_line) entry_type = obj["type"] if entry_type == "item": # filtering records on their properties keep = False claims = obj["claims"] for prop, value_set in prop_filter.items(): claim_property = claims.get(prop, None) if claim_property: for cp in claim_property: cp_id = cp['mainsnak'].get('datavalue', {}).get('value', {}).get('id') cp_rank = cp['rank'] if cp_rank != "deprecated" and cp_id in value_set: keep = True if keep: unique_id = obj["id"] if to_print: print("ID:", unique_id) print("type:", entry_type) # parsing all properties that refer to other entities if parse_properties: for prop, claim_property in claims.items(): cp_dicts = [cp['mainsnak']['datavalue'].get('value') for cp in claim_property if cp['mainsnak'].get('datavalue')] cp_values = [cp_dict.get('id') for cp_dict in cp_dicts if isinstance(cp_dict, dict) if cp_dict.get('id') is not None] if cp_values: if to_print: print("prop:", prop, cp_values) if parse_sitelinks: site_value = obj["sitelinks"].get(site_filter, None) if site_value: site = site_value['title'] if to_print: print(site_filter, ":", site) title_to_id[site] = unique_id # print(site, "for", unique_id) if parse_labels: labels = obj["labels"] if labels: for lang in languages: lang_label = labels.get(lang, None) if lang_label: if to_print: print("label (" + lang + "):", lang_label["value"]) if parse_descriptions: descriptions = obj["descriptions"] if descriptions: for lang in languages: lang_descr = descriptions.get(lang, None) if lang_descr: if to_print: print("description (" + lang + "):", lang_descr["value"]) if parse_aliases: aliases = obj["aliases"] if aliases: for lang in languages: lang_aliases = aliases.get(lang, None) if lang_aliases: for item in lang_aliases: if to_print: print("alias (" + lang + "):", item["value"]) if to_print: print() line = file.readline() cnt += 1 return title_to_id def _read_wikidata_entities_regex_depr(limit=None, to_print=False): """ Read the JSON wiki data and parse out the entities with regular expressions. Takes XXX to parse 55M lines. """ regex_p31 = re.compile(r'mainsnak[^}]*\"P31\"[^}]*}', re.UNICODE) regex_id = re.compile(r'\"id\":"Q[0-9]*"', re.UNICODE) regex_enwiki = re.compile(r'\"enwiki\":[^}]*}', re.UNICODE) regex_title = re.compile(r'\"title\":"[^"]*"', re.UNICODE) title_to_id = dict() with bz2.open(WIKIDATA_JSON, mode='rb') as file: line = file.readline() cnt = 0 while line and (not limit or cnt < limit): if cnt % 500000 == 0: print(datetime.datetime.now(), "processed", cnt, "lines of WikiData dump") clean_line = line.strip() if clean_line.endswith(b","): clean_line = clean_line[:-1] if len(clean_line) > 1: clean_line = line.strip().decode("utf-8") keep = False p31_matches = regex_p31.findall(clean_line) if p31_matches: for p31_match in p31_matches: id_matches = regex_id.findall(p31_match) for id_match in id_matches: id_match = id_match[6:][:-1] if id_match == "Q5" or id_match == "Q15632617": keep = True if keep: id_match = regex_id.search(clean_line).group(0) id_match = id_match[6:][:-1] enwiki_matches = regex_enwiki.findall(clean_line) if enwiki_matches: for enwiki_match in enwiki_matches: title_match = regex_title.search(enwiki_match).group(0) title = title_match[9:][:-1] title_to_id[title] = id_match # print(title, "for", id_match) line = file.readline() cnt += 1 return title_to_id def test_kb(kb): # TODO: the vocab objects are now different between nlp and kb - will be fixed when KB is written as part of NLP IO nlp = spacy.load('en_core_web_sm') el_pipe = nlp.create_pipe(name='entity_linker', config={"kb": kb}) nlp.add_pipe(el_pipe, last=True) candidates = my_kb.get_candidates("Bush") print("generating candidates for 'Bush' :") for c in candidates: print(" ", c.prior_prob, c.alias_, "-->", c.entity_ + " (freq=" + str(c.entity_freq) + ")") print() text = "In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, " \ "Douglas reminds us to always bring our towel. " \ "The main character in Doug's novel is the man Arthur Dent, " \ "but Douglas doesn't write about George Washington or Homer Simpson." doc = nlp(text) for ent in doc.ents: print("ent", ent.text, ent.label_, ent.kb_id_) def add_coref(): """ STEP 5: add coreference resolution to our model """ nlp = spacy.load('en_core_web_sm') # nlp = spacy.load('en') # TODO: this doesn't work yet # neuralcoref.add_to_pipe(nlp) print("done adding to pipe") doc = nlp(u'My sister has a dog. She loves him.') print("done doc") print(doc._.has_coref) print(doc._.coref_clusters) def create_training(kb): if not kb: raise ValueError("kb should be defined") # nlp = spacy.load('en_core_web_sm') wp_to_id = _get_entity_to_id() _read_wikipedia_texts(kb, wp_to_id, limit=None) def _read_wikipedia_texts(kb, wp_to_id, limit=None): """ Read the XML wikipedia data to parse out training data: raw text data + positive and negative instances """ title_regex = re.compile(r'(?<=).*(?=)') id_regex = re.compile(r'(?<=)\d*(?=)') read_ids = set() entityfile_loc = TRAINING_OUTPUT_SET_DIR + "/" + "gold_entities.csv" with open(entityfile_loc, mode="w", encoding='utf8') as entityfile: # write entity training header file _write_training_entity(outputfile=entityfile, article_id="article_id", alias="alias", entity="entity", correct="correct") with bz2.open(ENWIKI_DUMP, mode='rb') as file: line = file.readline() cnt = 0 article_text = "" article_title = None article_id = None reading_text = False reading_revision = False while line and (not limit or cnt < limit): if cnt % 500000 == 0: print(datetime.datetime.now(), "processed", cnt, "lines of Wikipedia dump") clean_line = line.strip().decode("utf-8") # print(clean_line) if clean_line == "": reading_revision = True elif clean_line == "": reading_revision = False # Start reading new page if clean_line == "": article_text = "" article_title = None article_id = None # finished reading this page elif clean_line == "": if article_id: try: _process_wp_text(kb, wp_to_id, entityfile, article_id, article_title, article_text.strip()) # on a previous run, an error occurred after 46M lines and 2h except Exception as e: print("Error processing article", article_id, article_title) print(e) else: print("Done processing a page, but couldn't find an article_id ?") print(article_title) print(article_text) article_text = "" article_title = None article_id = None reading_text = False reading_revision = False # start reading text within a page if ").*(?=", entity) candidates = kb.get_candidates(alias) # as training data, we only store entities that are sufficiently ambiguous if len(candidates) > 1: _write_training_article(article_id=article_id, clean_text=clean_text) # print("alias", alias) # print all incorrect candidates for c in candidates: if entity != c.entity_: _write_training_entity(outputfile=entityfile, article_id=article_id, alias=alias, entity=c.entity_, correct="0") # print the one correct candidate _write_training_entity(outputfile=entityfile, article_id=article_id, alias=alias, entity=entity, correct="1") # print("gold entity", entity) # print() # _run_ner_depr(nlp, article_id, article_title, clean_text, article_dict) # print() info_regex = re.compile(r'{[^{]*?}') interwiki_regex = re.compile(r'\[\[([^|]*?)]]') interwiki_2_regex = re.compile(r'\[\[[^|]*?\|([^|]*?)]]') htlm_regex = re.compile(r'<!--[^!]*-->') category_regex = re.compile(r'\[\[Category:[^\[]*]]') file_regex = re.compile(r'\[\[File:[^[\]]+]]') ref_regex = re.compile(r'<ref.*?>') # non-greedy ref_2_regex = re.compile(r'</ref.*?>') # non-greedy def _get_clean_wp_text(article_text): clean_text = article_text.strip() # remove bolding & italic markup clean_text = clean_text.replace('\'\'\'', '') clean_text = clean_text.replace('\'\'', '') # remove nested {{info}} statements by removing the inner/smallest ones first and iterating try_again = True previous_length = len(clean_text) while try_again: clean_text = info_regex.sub('', clean_text) # non-greedy match excluding a nested { if len(clean_text) < previous_length: try_again = True else: try_again = False previous_length = len(clean_text) # remove simple interwiki links (no alternative name) clean_text = interwiki_regex.sub(r'\1', clean_text) # remove simple interwiki links by picking the alternative name clean_text = interwiki_2_regex.sub(r'\1', clean_text) # remove HTML comments clean_text = htlm_regex.sub('', clean_text) # remove Category and File statements clean_text = category_regex.sub('', clean_text) clean_text = file_regex.sub('', clean_text) # remove multiple = while '==' in clean_text: clean_text = clean_text.replace("==", "=") clean_text = clean_text.replace(". =", ".") clean_text = clean_text.replace(" = ", ". ") clean_text = clean_text.replace("= ", ".") clean_text = clean_text.replace(" =", "") # remove refs (non-greedy match) clean_text = ref_regex.sub('', clean_text) clean_text = ref_2_regex.sub('', clean_text) # remove additional wikiformatting clean_text = re.sub(r'<blockquote>', '', clean_text) clean_text = re.sub(r'</blockquote>', '', clean_text) # change special characters back to normal ones clean_text = clean_text.replace(r'<', '<') clean_text = clean_text.replace(r'>', '>') clean_text = clean_text.replace(r'"', '"') clean_text = clean_text.replace(r'&nbsp;', ' ') clean_text = clean_text.replace(r'&', '&') # remove multiple spaces while ' ' in clean_text: clean_text = clean_text.replace(' ', ' ') return clean_text.strip() def _write_training_article(article_id, clean_text): file_loc = TRAINING_OUTPUT_SET_DIR + "/" + str(article_id) + ".txt" with open(file_loc, mode='w', encoding='utf8') as outputfile: outputfile.write(clean_text) def _write_training_entity(outputfile, article_id, alias, entity, correct): outputfile.write(article_id + "|" + alias + "|" + entity + "|" + correct + "\n") def _run_ner_depr(nlp, article_id, article_title, clean_text, article_dict): doc = nlp(clean_text) for ent in doc.ents: if ent.label_ == "PERSON": # TODO: expand to non-persons ent_id = article_dict.get(ent.text) if ent_id: print(" -", ent.text, ent.label_, ent_id) else: print(" -", ent.text, ent.label_, '???') # TODO: investigate these cases if __name__ == "__main__": print("START", datetime.datetime.now()) print() my_kb = None # one-time methods to create KB and write to file to_create_prior_probs = False to_create_entity_counts = False to_create_kb = False # read KB back in from file to_read_kb = True to_test_kb = False create_wp_training = True # STEP 1 : create prior probabilities from WP # run only once ! if to_create_prior_probs: print("STEP 1: to_create_prior_probs", datetime.datetime.now()) read_wikipedia_prior_probs() print() # STEP 2 : deduce entity frequencies from WP # run only once ! if to_create_entity_counts: print("STEP 2: to_create_entity_counts", datetime.datetime.now()) write_entity_counts() print() # STEP 3 : create KB and write to file # run only once ! if to_create_kb: print("STEP 3a: to_create_kb", datetime.datetime.now()) my_nlp = spacy.load('en_core_web_sm') my_vocab = my_nlp.vocab my_kb = create_kb(my_vocab, max_entities_per_alias=10, min_occ=5, to_print=False) print("kb entities:", my_kb.get_size_entities()) print("kb aliases:", my_kb.get_size_aliases()) print() print("STEP 3b: write KB", datetime.datetime.now()) my_kb.dump(KB_FILE) my_vocab.to_disk(VOCAB_DIR) print() # STEP 4 : read KB back in from file if to_read_kb: print("STEP 4: to_read_kb", datetime.datetime.now()) my_vocab = Vocab() my_vocab.from_disk(VOCAB_DIR) my_kb = KnowledgeBase(vocab=my_vocab) my_kb.load_bulk(KB_FILE) print("kb entities:", my_kb.get_size_entities()) print("kb aliases:", my_kb.get_size_aliases()) print() # test KB if to_test_kb: test_kb(my_kb) print() # STEP 5: create a training dataset from WP if create_wp_training: print("STEP 5: create training dataset", datetime.datetime.now()) create_training(my_kb) # TODO coreference resolution # add_coref() print() print("STOP", datetime.datetime.now())