from thinc.api import Model, noop from ..util import registry from .parser_model import ParserStepModel @registry.layers("spacy.TransitionModel.v1") def TransitionModel( tok2vec, lower, upper, resize_output, dropout=0.2, unseen_classes=set() ): """Set up a stepwise transition-based model""" if upper is None: has_upper = False upper = noop() else: has_upper = True # don't define nO for this object, because we can't dynamically change it return Model( name="parser_model", forward=forward, dims={"nI": tok2vec.maybe_get_dim("nI")}, layers=[tok2vec, lower, upper], refs={"tok2vec": tok2vec, "lower": lower, "upper": upper}, init=init, attrs={ "has_upper": has_upper, "unseen_classes": set(unseen_classes), "resize_output": resize_output, }, ) def forward(model, X, is_train): step_model = ParserStepModel( X, model.layers, unseen_classes=model.attrs["unseen_classes"], train=is_train, has_upper=model.attrs["has_upper"], ) return step_model, step_model.finish_steps def init(model, X=None, Y=None): model.get_ref("tok2vec").initialize(X=X) lower = model.get_ref("lower") lower.initialize() if model.attrs["has_upper"]: statevecs = model.ops.alloc2f(2, lower.get_dim("nO")) model.get_ref("upper").initialize(X=statevecs)