# cython: infer_types
# coding: utf8
from __future__ import unicode_literals

from libc.string cimport memset

from .attrs cimport POS, IS_SPACE
from .attrs import LEMMA, intify_attrs
from .parts_of_speech cimport SPACE
from .parts_of_speech import IDS as POS_IDS
from .lexeme cimport Lexeme
from .errors import Errors


def _normalize_props(props):
    """Transform deprecated string keys to correct names."""
    out = {}
    for key, value in props.items():
        if key == POS:
            if hasattr(value, 'upper'):
                value = value.upper()
            if value in POS_IDS:
                value = POS_IDS[value]
            out[key] = value
        elif isinstance(key, int):
            out[key] = value
        elif key.lower() == 'pos':
            out[POS] = POS_IDS[value.upper()]
        else:
            out[key] = value
    return out


cdef class Morphology:
    def __init__(self, StringStore string_store, tag_map, lemmatizer, exc=None):
        self.mem = Pool()
        self.strings = string_store
        # Add special space symbol. We prefix with underscore, to make sure it
        # always sorts to the end.
        space_attrs = tag_map.get('SP', {POS: SPACE})
        if '_SP' not in tag_map:
            self.strings.add('_SP')
            tag_map = dict(tag_map)
            tag_map['_SP'] = space_attrs
        self.tag_names = tuple(sorted(tag_map.keys()))
        self.tag_map = {}
        self.lemmatizer = lemmatizer
        self.n_tags = len(tag_map)
        self.reverse_index = {}

        self.rich_tags = <RichTagC*>self.mem.alloc(self.n_tags+1, sizeof(RichTagC))
        for i, (tag_str, attrs) in enumerate(sorted(tag_map.items())):
            self.strings.add(tag_str)
            self.tag_map[tag_str] = dict(attrs)
            attrs = _normalize_props(attrs)
            attrs = intify_attrs(attrs, self.strings, _do_deprecated=True)
            self.rich_tags[i].id = i
            self.rich_tags[i].name = self.strings.add(tag_str)
            self.rich_tags[i].morph = 0
            self.rich_tags[i].pos = attrs[POS]
            self.reverse_index[self.rich_tags[i].name] = i
        # Add a 'null' tag, which we can reference when assign morphology to
        # untagged tokens.
        self.rich_tags[self.n_tags].id = self.n_tags

        self._cache = PreshMapArray(self.n_tags)
        self.exc = {}
        if exc is not None:
            for (tag_str, orth_str), attrs in exc.items():
                self.add_special_case(tag_str, orth_str, attrs)

    def __reduce__(self):
        return (Morphology, (self.strings, self.tag_map, self.lemmatizer,
                             self.exc), None, None)

    cdef int assign_untagged(self, TokenC* token) except -1:
        """Set morphological attributes on a token without a POS tag. Uses
        the lemmatizer's lookup() method, which looks up the string in the
        table provided by the language data as lemma_lookup (if available).
        """
        if token.lemma == 0:
            orth_str = self.strings[token.lex.orth]
            lemma = self.lemmatizer.lookup(orth_str)
            token.lemma = self.strings.add(lemma)

    cdef int assign_tag(self, TokenC* token, tag) except -1:
        if isinstance(tag, basestring):
            tag = self.strings.add(tag)
        if tag in self.reverse_index:
            tag_id = self.reverse_index[tag]
            self.assign_tag_id(token, tag_id)
        else:
            token.tag = tag

    cdef int assign_tag_id(self, TokenC* token, int tag_id) except -1:
        if tag_id > self.n_tags:
            raise ValueError(Errors.E014.format(tag=tag_id))
        # TODO: It's pretty arbitrary to put this logic here. I guess the
        # justification is that this is where the specific word and the tag
        # interact. Still, we should have a better way to enforce this rule, or
        # figure out why the statistical model fails. Related to Issue #220
        if Lexeme.c_check_flag(token.lex, IS_SPACE):
            tag_id = self.reverse_index[self.strings.add('_SP')]
        rich_tag = self.rich_tags[tag_id]
        analysis = <MorphAnalysisC*>self._cache.get(tag_id, token.lex.orth)
        if analysis is NULL:
            analysis = <MorphAnalysisC*>self.mem.alloc(1, sizeof(MorphAnalysisC))
            tag_str = self.strings[self.rich_tags[tag_id].name]
            analysis.tag = rich_tag
            analysis.lemma = self.lemmatize(analysis.tag.pos, token.lex.orth,
                                            self.tag_map.get(tag_str, {}))
            self._cache.set(tag_id, token.lex.orth, analysis)
        if token.lemma == 0:
            token.lemma = analysis.lemma
        token.pos = analysis.tag.pos
        token.tag = analysis.tag.name
        token.morph = analysis.tag.morph

    cdef int assign_feature(self, uint64_t* flags, univ_morph_t flag_id, bint value) except -1:
        cdef flags_t one = 1
        if value:
            flags[0] |= one << flag_id
        else:
            flags[0] &= ~(one << flag_id)

    def add_special_case(self, unicode tag_str, unicode orth_str, attrs,
                         force=False):
        """Add a special-case rule to the morphological analyser. Tokens whose
        tag and orth match the rule will receive the specified properties.

        tag (unicode): The part-of-speech tag to key the exception.
        orth (unicode): The word-form to key the exception.
        """
        # TODO: Currently we've assumed that we know the number of tags --
        # RichTagC is an array, and _cache is a PreshMapArray
        # This is really bad: it makes the morphology typed to the tagger
        # classes, which is all wrong.
        self.exc[(tag_str, orth_str)] = dict(attrs)
        tag = self.strings.add(tag_str)
        if tag not in self.reverse_index:
            return
        tag_id = self.reverse_index[tag]
        orth = self.strings[orth_str]
        cdef RichTagC rich_tag = self.rich_tags[tag_id]
        attrs = intify_attrs(attrs, self.strings, _do_deprecated=True)
        cached = <MorphAnalysisC*>self._cache.get(tag_id, orth)
        if cached is NULL:
            cached = <MorphAnalysisC*>self.mem.alloc(1, sizeof(MorphAnalysisC))
        elif force:
            memset(cached, 0, sizeof(cached[0]))
        else:
            raise ValueError(Errors.E015.format(tag=tag_str, orth=orth_str))

        cached.tag = rich_tag
        # TODO: Refactor this to take arbitrary attributes.
        for name_id, value_id in attrs.items():
            if name_id == LEMMA:
                cached.lemma = value_id
            else:
                self.assign_feature(&cached.tag.morph, name_id, value_id)
        if cached.lemma == 0:
            cached.lemma = self.lemmatize(rich_tag.pos, orth, attrs)
        self._cache.set(tag_id, orth, <void*>cached)

    def load_morph_exceptions(self, dict exc):
        # Map (form, pos) to (lemma, rich tag)
        for tag_str, entries in exc.items():
            for form_str, attrs in entries.items():
                self.add_special_case(tag_str, form_str, attrs)

    def lemmatize(self, const univ_pos_t univ_pos, attr_t orth, morphology):
        if orth not in self.strings:
            return orth
        cdef unicode py_string = self.strings[orth]
        if self.lemmatizer is None:
            return self.strings.add(py_string.lower())
        cdef list lemma_strings
        cdef unicode lemma_string
        lemma_strings = self.lemmatizer(py_string, univ_pos, morphology)
        lemma_string = lemma_strings[0]
        lemma = self.strings.add(lemma_string)
        return lemma


IDS = {
    "Animacy_anim": Animacy_anim,
    "Animacy_inan": Animacy_inan,
    "Animacy_hum": Animacy_hum, # U20
    "Animacy_nhum": Animacy_nhum,
    "Aspect_freq": Aspect_freq,
    "Aspect_imp": Aspect_imp,
    "Aspect_mod": Aspect_mod,
    "Aspect_none": Aspect_none,
    "Aspect_perf": Aspect_perf,
    "Case_abe": Case_abe,
    "Case_abl": Case_abl,
    "Case_abs": Case_abs,
    "Case_acc": Case_acc,
    "Case_ade": Case_ade,
    "Case_all": Case_all,
    "Case_cau": Case_cau,
    "Case_com": Case_com,
    "Case_dat": Case_dat,
    "Case_del": Case_del,
    "Case_dis": Case_dis,
    "Case_ela": Case_ela,
    "Case_ess": Case_ess,
    "Case_gen": Case_gen,
    "Case_ill": Case_ill,
    "Case_ine": Case_ine,
    "Case_ins": Case_ins,
    "Case_loc": Case_loc,
    "Case_lat": Case_lat,
    "Case_nom": Case_nom,
    "Case_par": Case_par,
    "Case_sub": Case_sub,
    "Case_sup": Case_sup,
    "Case_tem": Case_tem,
    "Case_ter": Case_ter,
    "Case_tra": Case_tra,
    "Case_voc": Case_voc,
    "Definite_two": Definite_two,
    "Definite_def": Definite_def,
    "Definite_red": Definite_red,
    "Definite_cons": Definite_cons,  # U20
    "Definite_ind": Definite_ind,
    "Degree_cmp": Degree_cmp,
    "Degree_comp": Degree_comp,
    "Degree_none": Degree_none,
    "Degree_pos": Degree_pos,
    "Degree_sup": Degree_sup,
    "Degree_abs": Degree_abs,
    "Degree_com": Degree_com,
    "Degree_dim ": Degree_dim,  # du
    "Gender_com": Gender_com,
    "Gender_fem": Gender_fem,
    "Gender_masc": Gender_masc,
    "Gender_neut": Gender_neut,
    "Mood_cnd": Mood_cnd,
    "Mood_imp": Mood_imp,
    "Mood_ind": Mood_ind,
    "Mood_n": Mood_n,
    "Mood_pot": Mood_pot,
    "Mood_sub": Mood_sub,
    "Mood_opt": Mood_opt,
    "Negative_neg": Negative_neg,
    "Negative_pos": Negative_pos,
    "Negative_yes": Negative_yes,
    "Polarity_neg": Polarity_neg,  # U20
    "Polarity_pos": Polarity_pos,  # U20
    "Number_com": Number_com,
    "Number_dual": Number_dual,
    "Number_none": Number_none,
    "Number_plur": Number_plur,
    "Number_sing": Number_sing,
    "Number_ptan ": Number_ptan,  # bg
    "Number_count ": Number_count,  # bg
    "NumType_card": NumType_card,
    "NumType_dist": NumType_dist,
    "NumType_frac": NumType_frac,
    "NumType_gen": NumType_gen,
    "NumType_mult": NumType_mult,
    "NumType_none": NumType_none,
    "NumType_ord": NumType_ord,
    "NumType_sets": NumType_sets,
    "Person_one": Person_one,
    "Person_two": Person_two,
    "Person_three": Person_three,
    "Person_none": Person_none,
    "Poss_yes": Poss_yes,
    "PronType_advPart": PronType_advPart,
    "PronType_art": PronType_art,
    "PronType_default": PronType_default,
    "PronType_dem": PronType_dem,
    "PronType_ind": PronType_ind,
    "PronType_int": PronType_int,
    "PronType_neg": PronType_neg,
    "PronType_prs": PronType_prs,
    "PronType_rcp": PronType_rcp,
    "PronType_rel": PronType_rel,
    "PronType_tot": PronType_tot,
    "PronType_clit": PronType_clit,
    "PronType_exc ": PronType_exc,  # es, ca, it, fa,
    "Reflex_yes": Reflex_yes,
    "Tense_fut": Tense_fut,
    "Tense_imp": Tense_imp,
    "Tense_past": Tense_past,
    "Tense_pres": Tense_pres,
    "VerbForm_fin": VerbForm_fin,
    "VerbForm_ger": VerbForm_ger,
    "VerbForm_inf": VerbForm_inf,
    "VerbForm_none": VerbForm_none,
    "VerbForm_part": VerbForm_part,
    "VerbForm_partFut": VerbForm_partFut,
    "VerbForm_partPast": VerbForm_partPast,
    "VerbForm_partPres": VerbForm_partPres,
    "VerbForm_sup": VerbForm_sup,
    "VerbForm_trans": VerbForm_trans,
    "VerbForm_conv": VerbForm_conv,  # U20
    "VerbForm_gdv ": VerbForm_gdv,  # la,
    "Voice_act": Voice_act,
    "Voice_cau": Voice_cau,
    "Voice_pass": Voice_pass,
    "Voice_mid ": Voice_mid,  # gkc,
    "Voice_int ": Voice_int,  # hb,
    "Abbr_yes ": Abbr_yes,  # cz, fi, sl, U,
    "AdpType_prep ": AdpType_prep,  # cz, U,
    "AdpType_post ": AdpType_post,  # U,
    "AdpType_voc ": AdpType_voc,  # cz,
    "AdpType_comprep ": AdpType_comprep,  # cz,
    "AdpType_circ ": AdpType_circ,  # U,
    "AdvType_man": AdvType_man,
    "AdvType_loc": AdvType_loc,
    "AdvType_tim": AdvType_tim,
    "AdvType_deg": AdvType_deg,
    "AdvType_cau": AdvType_cau,
    "AdvType_mod": AdvType_mod,
    "AdvType_sta": AdvType_sta,
    "AdvType_ex": AdvType_ex,
    "AdvType_adadj": AdvType_adadj,
    "ConjType_oper ": ConjType_oper,  # cz, U,
    "ConjType_comp ": ConjType_comp,  # cz, U,
    "Connegative_yes ": Connegative_yes,  # fi,
    "Derivation_minen ": Derivation_minen,  # fi,
    "Derivation_sti ": Derivation_sti,  # fi,
    "Derivation_inen ": Derivation_inen,  # fi,
    "Derivation_lainen ": Derivation_lainen,  # fi,
    "Derivation_ja ": Derivation_ja,  # fi,
    "Derivation_ton ": Derivation_ton,  # fi,
    "Derivation_vs ": Derivation_vs,  # fi,
    "Derivation_ttain ": Derivation_ttain,  # fi,
    "Derivation_ttaa ": Derivation_ttaa,  # fi,
    "Echo_rdp ": Echo_rdp,  # U,
    "Echo_ech ": Echo_ech,  # U,
    "Foreign_foreign ": Foreign_foreign,  # cz, fi, U,
    "Foreign_fscript ": Foreign_fscript,  # cz, fi, U,
    "Foreign_tscript ": Foreign_tscript,  # cz, U,
    "Foreign_yes ": Foreign_yes,  # sl,
    "Gender_dat_masc ": Gender_dat_masc,  # bq, U,
    "Gender_dat_fem ": Gender_dat_fem,  # bq, U,
    "Gender_erg_masc ": Gender_erg_masc,  # bq,
    "Gender_erg_fem ": Gender_erg_fem,  # bq,
    "Gender_psor_masc ": Gender_psor_masc,  # cz, sl, U,
    "Gender_psor_fem ": Gender_psor_fem,  # cz, sl, U,
    "Gender_psor_neut ": Gender_psor_neut,  # sl,
    "Hyph_yes ": Hyph_yes,  # cz, U,
    "InfForm_one ": InfForm_one,  # fi,
    "InfForm_two ": InfForm_two,  # fi,
    "InfForm_three ": InfForm_three,  # fi,
    "NameType_geo ": NameType_geo,  # U, cz,
    "NameType_prs ": NameType_prs,  # U, cz,
    "NameType_giv ": NameType_giv,  # U, cz,
    "NameType_sur ": NameType_sur,  # U, cz,
    "NameType_nat ": NameType_nat,  # U, cz,
    "NameType_com ": NameType_com,  # U, cz,
    "NameType_pro ": NameType_pro,  # U, cz,
    "NameType_oth ": NameType_oth,  # U, cz,
    "NounType_com ": NounType_com,  # U,
    "NounType_prop ": NounType_prop,  # U,
    "NounType_class ": NounType_class,  # U,
    "Number_abs_sing ": Number_abs_sing,  # bq, U,
    "Number_abs_plur ": Number_abs_plur,  # bq, U,
    "Number_dat_sing ": Number_dat_sing,  # bq, U,
    "Number_dat_plur ": Number_dat_plur,  # bq, U,
    "Number_erg_sing ": Number_erg_sing,  # bq, U,
    "Number_erg_plur ": Number_erg_plur,  # bq, U,
    "Number_psee_sing ": Number_psee_sing,  # U,
    "Number_psee_plur ": Number_psee_plur,  # U,
    "Number_psor_sing ": Number_psor_sing,  # cz, fi, sl, U,
    "Number_psor_plur ": Number_psor_plur,  # cz, fi, sl, U,
    "NumForm_digit ": NumForm_digit,  # cz, sl, U,
    "NumForm_roman ": NumForm_roman,  # cz, sl, U,
    "NumForm_word ": NumForm_word,  # cz, sl, U,
    "NumValue_one ": NumValue_one,  # cz, U,
    "NumValue_two ": NumValue_two,  # cz, U,
    "NumValue_three ": NumValue_three,  # cz, U,
    "PartForm_pres ": PartForm_pres,  # fi,
    "PartForm_past ": PartForm_past,  # fi,
    "PartForm_agt ": PartForm_agt,  # fi,
    "PartForm_neg ": PartForm_neg,  # fi,
    "PartType_mod ": PartType_mod,  # U,
    "PartType_emp ": PartType_emp,  # U,
    "PartType_res ": PartType_res,  # U,
    "PartType_inf ": PartType_inf,  # U,
    "PartType_vbp ": PartType_vbp,  # U,
    "Person_abs_one ": Person_abs_one,  # bq, U,
    "Person_abs_two ": Person_abs_two,  # bq, U,
    "Person_abs_three ": Person_abs_three,  # bq, U,
    "Person_dat_one ": Person_dat_one,  # bq, U,
    "Person_dat_two ": Person_dat_two,  # bq, U,
    "Person_dat_three ": Person_dat_three,  # bq, U,
    "Person_erg_one ": Person_erg_one,  # bq, U,
    "Person_erg_two ": Person_erg_two,  # bq, U,
    "Person_erg_three ": Person_erg_three,  # bq, U,
    "Person_psor_one ": Person_psor_one,  # fi, U,
    "Person_psor_two ": Person_psor_two,  # fi, U,
    "Person_psor_three ": Person_psor_three,  # fi, U,
    "Polite_inf ": Polite_inf,  # bq, U,
    "Polite_pol ": Polite_pol,  # bq, U,
    "Polite_abs_inf ": Polite_abs_inf,  # bq, U,
    "Polite_abs_pol ": Polite_abs_pol,  # bq, U,
    "Polite_erg_inf ": Polite_erg_inf,  # bq, U,
    "Polite_erg_pol ": Polite_erg_pol,  # bq, U,
    "Polite_dat_inf ": Polite_dat_inf,  # bq, U,
    "Polite_dat_pol ": Polite_dat_pol,  # bq, U,
    "Prefix_yes ": Prefix_yes,  # U,
    "PrepCase_npr ": PrepCase_npr,  # cz,
    "PrepCase_pre ": PrepCase_pre,  # U,
    "PunctSide_ini ": PunctSide_ini,  # U,
    "PunctSide_fin ": PunctSide_fin,  # U,
    "PunctType_peri ": PunctType_peri,  # U,
    "PunctType_qest ": PunctType_qest,  # U,
    "PunctType_excl ": PunctType_excl,  # U,
    "PunctType_quot ": PunctType_quot,  # U,
    "PunctType_brck ": PunctType_brck,  # U,
    "PunctType_comm ": PunctType_comm,  # U,
    "PunctType_colo ": PunctType_colo,  # U,
    "PunctType_semi ": PunctType_semi,  # U,
    "PunctType_dash ": PunctType_dash,  # U,
    "Style_arch ": Style_arch,  # cz, fi, U,
    "Style_rare ": Style_rare,  # cz, fi, U,
    "Style_poet ": Style_poet,  # cz, U,
    "Style_norm ": Style_norm,  # cz, U,
    "Style_coll ": Style_coll,  # cz, U,
    "Style_vrnc ": Style_vrnc,  # cz, U,
    "Style_sing ": Style_sing,  # cz, U,
    "Style_expr ": Style_expr,  # cz, U,
    "Style_derg ": Style_derg,  # cz, U,
    "Style_vulg ": Style_vulg,  # cz, U,
    "Style_yes ": Style_yes,  # fi, U,
    "StyleVariant_styleShort ": StyleVariant_styleShort,  # cz,
    "StyleVariant_styleBound ": StyleVariant_styleBound,  # cz, sl,
    "VerbType_aux ": VerbType_aux,  # U,
    "VerbType_cop ": VerbType_cop,  # U,
    "VerbType_mod ": VerbType_mod,  # U,
    "VerbType_light ": VerbType_light,  # U,
}


NAMES = [key for key, value in sorted(IDS.items(), key=lambda item: item[1])]
# Unfortunate hack here, to work around problem with long cpdef enum
# (which is generating an enormous amount of C++ in Cython 0.24+)
# We keep the enum cdef, and just make sure the names are available to Python
locals().update(IDS)