from __future__ import unicode_literals from collections import defaultdict import numpy import numpy.linalg cimport numpy as np import math from ..structs cimport TokenC, LexemeC from ..typedefs cimport flags_t, attr_t from ..attrs cimport attr_id_t from ..parts_of_speech cimport univ_pos_t from ..util import normalize_slice cdef class Span: """A slice from a Doc object.""" def __cinit__(self, Doc tokens, int start, int end, int label=0, vector=None, vector_norm=None): if not (0 <= start <= end <= len(tokens)): raise IndexError self.doc = tokens self.start = start self.end = end self.label = label self._vector = vector self._vector_norm = vector_norm def __richcmp__(self, Span other, int op): # Eq if op == 0: return self.start < other.start elif op == 1: return self.start <= other.start elif op == 2: return self.start == other.start and self.end == other.end elif op == 3: return self.start != other.start or self.end != other.end elif op == 4: return self.start > other.start elif op == 5: return self.start >= other.start def __len__(self): if self.end < self.start: return 0 return self.end - self.start def __repr__(self): text = self.text_with_ws if self[-1].whitespace_: text = text[:-1] return text def __getitem__(self, object i): if isinstance(i, slice): start, end = normalize_slice(len(self), i.start, i.stop, i.step) start += self.start end += self.start return Span(self.doc, start, end) if i < 0: return self.doc[self.end + i] else: return self.doc[self.start + i] def __iter__(self): for i in range(self.start, self.end): yield self.doc[i] def merge(self, unicode tag, unicode lemma, unicode ent_type): self.doc.merge(self[0].idx, self[-1].idx + len(self[-1]), tag, lemma, ent_type) def similarity(self, other): if self.vector_norm == 0.0 or other.vector_norm == 0.0: return 0.0 return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm) property vector: def __get__(self): if self._vector is None: self._vector = sum(t.vector for t in self) / len(self) return self._vector property vector_norm: def __get__(self): cdef float value if self._vector_norm is None: self._vector_norm = 1e-20 for value in self.vector: self._vector_norm += value * value self._vector_norm = math.sqrt(self._vector_norm) return self._vector_norm property text: def __get__(self): text = self.text_with_ws if self[-1].whitespace_: text = text[:-1] return text property text_with_ws: def __get__(self): return u''.join([t.text_with_ws for t in self]) property root: """The first ancestor of the first word of the span that has its head outside the span. For example: >>> toks = nlp(u'I like New York in Autumn.') Let's name the indices --- easier than writing "toks[4]" etc. >>> i, like, new, york, in_, autumn, dot = range(len(toks)) The head of 'new' is 'York', and the head of 'York' is 'like' >>> toks[new].head.orth_ 'York' >>> toks[york].head.orth_ 'like' Create a span for "New York". Its root is "York". >>> new_york = toks[new:york+1] >>> new_york.root.orth_ 'York' When there are multiple words with external dependencies, we take the first: >>> toks[autumn].head.orth_, toks[dot].head.orth_ ('in', like') >>> autumn_dot = toks[autumn:] >>> autumn_dot.root.orth_ 'Autumn' """ def __get__(self): # This should probably be called 'head', and the other one called # 'gov'. But we went with 'head' elsehwhere, and now we're stuck =/ cdef const TokenC* start = &self.doc.data[self.start] cdef const TokenC* end = &self.doc.data[self.end] head = start while start <= (head + head.head) < end and head.head != 0: head += head.head return self.doc[head - self.doc.data] property lefts: """Tokens that are to the left of the Span, whose head is within the Span.""" def __get__(self): for token in reversed(self): # Reverse, so we get the tokens in order for left in token.lefts: if left.i < self.start: yield left property rights: """Tokens that are to the right of the Span, whose head is within the Span.""" def __get__(self): for token in self: for right in token.rights: if right.i >= self.end: yield right property subtree: def __get__(self): for word in self.lefts: yield from word.subtree yield from self for word in self.rights: yield from word.subtree property orth_: def __get__(self): return ''.join([t.string for t in self]).strip() property lemma_: def __get__(self): return ' '.join([t.lemma_ for t in self]).strip() property string: def __get__(self): return ''.join([t.string for t in self]) property label_: def __get__(self): return self.doc.vocab.strings[self.label]