import random import time from itertools import islice from pathlib import Path from typing import Iterable, List, Optional import numpy import typer from tqdm import tqdm from wasabi import msg from .. import util from ..language import Language from ..tokens import Doc from ..training import Corpus from ._util import Arg, Opt, benchmark_cli, setup_gpu @benchmark_cli.command( "speed", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}, ) def benchmark_speed_cli( # fmt: off ctx: typer.Context, model: str = Arg(..., help="Model name or path"), data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True), batch_size: Optional[int] = Opt(None, "--batch-size", "-b", min=1, help="Override the pipeline batch size"), no_shuffle: bool = Opt(False, "--no-shuffle", help="Do not shuffle benchmark data"), use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"), n_batches: int = Opt(50, "--batches", help="Minimum number of batches to benchmark", min=30,), warmup_epochs: int = Opt(3, "--warmup", "-w", min=0, help="Number of iterations over the data for warmup"), # fmt: on ): """ Benchmark a pipeline. Expects a loadable spaCy pipeline and benchmark data in the binary .spacy format. """ setup_gpu(use_gpu=use_gpu, silent=False) nlp = util.load_model(model) batch_size = batch_size if batch_size is not None else nlp.batch_size corpus = Corpus(data_path) docs = [eg.predicted for eg in corpus(nlp)] if len(docs) == 0: msg.fail("Cannot benchmark speed using an empty corpus.", exits=1) print(f"Warming up for {warmup_epochs} epochs...") warmup(nlp, docs, warmup_epochs, batch_size) print() print(f"Benchmarking {n_batches} batches...") wps = benchmark(nlp, docs, n_batches, batch_size, not no_shuffle) print() print_outliers(wps) print_mean_with_ci(wps) # Lowercased, behaves as a context manager function. class time_context: """Register the running time of a context.""" def __enter__(self): self.start = time.perf_counter() return self def __exit__(self, type, value, traceback): self.elapsed = time.perf_counter() - self.start class Quartiles: """Calculate the q1, q2, q3 quartiles and the inter-quartile range (iqr) of a sample.""" q1: float q2: float q3: float iqr: float def __init__(self, sample: numpy.ndarray) -> None: self.q1 = numpy.quantile(sample, 0.25) self.q2 = numpy.quantile(sample, 0.5) self.q3 = numpy.quantile(sample, 0.75) self.iqr = self.q3 - self.q1 def annotate( nlp: Language, docs: List[Doc], batch_size: Optional[int] ) -> numpy.ndarray: docs = nlp.pipe(tqdm(docs, unit="doc"), batch_size=batch_size) wps = [] while True: with time_context() as elapsed: batch_docs = list( islice(docs, batch_size if batch_size else nlp.batch_size) ) if len(batch_docs) == 0: break n_tokens = count_tokens(batch_docs) wps.append(n_tokens / elapsed.elapsed) return numpy.array(wps) def benchmark( nlp: Language, docs: List[Doc], n_batches: int, batch_size: int, shuffle: bool, ) -> numpy.ndarray: if shuffle: bench_docs = [ nlp.make_doc(random.choice(docs).text) for _ in range(n_batches * batch_size) ] else: bench_docs = [ nlp.make_doc(docs[i % len(docs)].text) for i in range(n_batches * batch_size) ] return annotate(nlp, bench_docs, batch_size) def bootstrap(x, statistic=numpy.mean, iterations=10000) -> numpy.ndarray: """Apply a statistic to repeated random samples of an array.""" return numpy.fromiter( ( statistic(numpy.random.choice(x, len(x), replace=True)) for _ in range(iterations) ), numpy.float64, ) def count_tokens(docs: Iterable[Doc]) -> int: return sum(len(doc) for doc in docs) def print_mean_with_ci(sample: numpy.ndarray): mean = numpy.mean(sample) bootstrap_means = bootstrap(sample) bootstrap_means.sort() # 95% confidence interval low = bootstrap_means[int(len(bootstrap_means) * 0.025)] high = bootstrap_means[int(len(bootstrap_means) * 0.975)] print(f"Mean: {mean:.1f} words/s (95% CI: {low-mean:.1f} +{high-mean:.1f})") def print_outliers(sample: numpy.ndarray): quartiles = Quartiles(sample) n_outliers = numpy.sum( (sample < (quartiles.q1 - 1.5 * quartiles.iqr)) | (sample > (quartiles.q3 + 1.5 * quartiles.iqr)) ) n_extreme_outliers = numpy.sum( (sample < (quartiles.q1 - 3.0 * quartiles.iqr)) | (sample > (quartiles.q3 + 3.0 * quartiles.iqr)) ) print( f"Outliers: {(100 * n_outliers) / len(sample):.1f}%, extreme outliers: {(100 * n_extreme_outliers) / len(sample)}%" ) def warmup( nlp: Language, docs: List[Doc], warmup_epochs: int, batch_size: Optional[int] ) -> numpy.ndarray: docs = warmup_epochs * docs return annotate(nlp, docs, batch_size)