from typing import Optional import numpy import time import re from collections import Counter from pathlib import Path from thinc.api import require_gpu, set_gpu_allocator from thinc.api import set_dropout_rate, to_categorical, fix_random_seed from thinc.api import Config, CosineDistance, L2Distance from wasabi import msg import srsly from functools import partial import typer from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error from ._util import import_code from ..ml.models.multi_task import build_cloze_multi_task_model from ..ml.models.multi_task import build_cloze_characters_multi_task_model from ..tokens import Doc from ..attrs import ID from .. import util from ..util import dot_to_object @app.command( "pretrain", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}, ) def pretrain_cli( # fmt: off ctx: typer.Context, # This is only used to read additional arguments config_path: Path = Arg(..., help="Path to config file", exists=True, dir_okay=False), output_dir: Path = Arg(..., help="Directory to write weights to on each epoch"), code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"), resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"), epoch_resume: Optional[int] = Opt(None, "--epoch-resume", "-er", help="The epoch to resume counting from when using --resume-path. Prevents unintended overwriting of existing weight files."), use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"), # fmt: on ): """ Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components, using an approximate language-modelling objective. Two objective types are available, vector-based and character-based. In the vector-based objective, we load word vectors that have been trained using a word2vec-style distributional similarity algorithm, and train a component like a CNN, BiLSTM, etc to predict vectors which match the pretrained ones. The weights are saved to a directory after each epoch. You can then pass a path to one of these pretrained weights files to the 'spacy train' command. This technique may be especially helpful if you have little labelled data. However, it's still quite experimental, so your mileage may vary. To load the weights back in during 'spacy train', you need to ensure all settings are the same between pretraining and training. Ideally, this is done by using the same config file for both commands. DOCS: https://nightly.spacy.io/api/cli#pretrain """ config_overrides = parse_config_overrides(ctx.args) import_code(code_path) verify_cli_args(config_path, output_dir, resume_path, epoch_resume) if use_gpu >= 0: msg.info("Using GPU") require_gpu(use_gpu) else: msg.info("Using CPU") msg.info(f"Loading config from: {config_path}") with show_validation_error(config_path): raw_config = util.load_config( config_path, overrides=config_overrides, interpolate=False ) config = raw_config.interpolate() if not config.get("pretraining"): # TODO: What's the solution here? How do we handle optional blocks? msg.fail("The [pretraining] block in your config is empty", exits=1) if not output_dir.exists(): output_dir.mkdir() msg.good(f"Created output directory: {output_dir}") # Save non-interpolated config raw_config.to_disk(output_dir / "config.cfg") msg.good("Saved config file in the output directory") pretrain( config, output_dir, resume_path=resume_path, epoch_resume=epoch_resume, use_gpu=use_gpu, ) def pretrain( config: Config, output_dir: Path, resume_path: Optional[Path] = None, epoch_resume: Optional[int] = None, use_gpu: int = -1, ): if config["training"]["seed"] is not None: fix_random_seed(config["training"]["seed"]) allocator = config["training"]["gpu_allocator"] if use_gpu >= 0 and allocator: set_gpu_allocator(allocator) nlp = util.load_model_from_config(config) C = util.resolve_training_config(nlp.config) P_cfg = C["pretraining"] corpus = dot_to_object(C, P_cfg["corpus"]) batcher = P_cfg["batcher"] model = create_pretraining_model(nlp, C["pretraining"]) optimizer = C["pretraining"]["optimizer"] # Load in pretrained weights to resume from if resume_path is not None: _resume_model(model, resume_path, epoch_resume) else: # Without '--resume-path' the '--epoch-resume' argument is ignored epoch_resume = 0 tracker = ProgressTracker(frequency=10000) msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_resume}") row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")} msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings) def _save_model(epoch, is_temp=False): is_temp_str = ".temp" if is_temp else "" with model.use_params(optimizer.averages): with (output_dir / f"model{epoch}{is_temp_str}.bin").open("wb") as file_: file_.write(model.get_ref("tok2vec").to_bytes()) log = { "nr_word": tracker.nr_word, "loss": tracker.loss, "epoch_loss": tracker.epoch_loss, "epoch": epoch, } with (output_dir / "log.jsonl").open("a") as file_: file_.write(srsly.json_dumps(log) + "\n") objective = create_objective(P_cfg["objective"]) # TODO: I think we probably want this to look more like the # 'create_train_batches' function? for epoch in range(epoch_resume, P_cfg["max_epochs"]): for batch_id, batch in enumerate(batcher(corpus(nlp))): docs = ensure_docs(batch) loss = make_update(model, docs, optimizer, objective) progress = tracker.update(epoch, loss, docs) if progress: msg.row(progress, **row_settings) if P_cfg["n_save_every"] and (batch_id % P_cfg["n_save_every"] == 0): _save_model(epoch, is_temp=True) _save_model(epoch) tracker.epoch_loss = 0.0 msg.good("Successfully finished pretrain") def ensure_docs(examples_or_docs): docs = [] for eg_or_doc in examples_or_docs: if isinstance(eg_or_doc, Doc): docs.append(eg_or_doc) else: docs.append(eg_or_doc.reference) return docs def _resume_model(model, resume_path, epoch_resume): msg.info(f"Resume training tok2vec from: {resume_path}") with resume_path.open("rb") as file_: weights_data = file_.read() model.get_ref("tok2vec").from_bytes(weights_data) # Parse the epoch number from the given weight file model_name = re.search(r"model\d+\.bin", str(resume_path)) if model_name: # Default weight file name so read epoch_start from it by cutting off 'model' and '.bin' epoch_resume = int(model_name.group(0)[5:][:-4]) + 1 msg.info(f"Resuming from epoch: {epoch_resume}") else: msg.info(f"Resuming from epoch: {epoch_resume}") def make_update(model, docs, optimizer, objective_func): """Perform an update over a single batch of documents. docs (iterable): A batch of `Doc` objects. optimizer (callable): An optimizer. RETURNS loss: A float for the loss. """ predictions, backprop = model.begin_update(docs) loss, gradients = objective_func(model.ops, docs, predictions) backprop(gradients) model.finish_update(optimizer) # Don't want to return a cupy object here # The gradients are modified in-place by the BERT MLM, # so we get an accurate loss return float(loss) def create_objective(config): """Create the objective for pretraining. We'd like to replace this with a registry function but it's tricky because we're also making a model choice based on this. For now we hard-code support for two types (characters, vectors). For characters you can specify n_characters, for vectors you can specify the loss. Bleh. """ objective_type = config["type"] if objective_type == "characters": return partial(get_characters_loss, nr_char=config["n_characters"]) elif objective_type == "vectors": if config["loss"] == "cosine": return partial( get_vectors_loss, distance=CosineDistance(normalize=True, ignore_zeros=True), ) elif config["loss"] == "L2": return partial( get_vectors_loss, distance=L2Distance(normalize=True, ignore_zeros=True) ) else: raise ValueError("Unexpected loss type", config["loss"]) else: raise ValueError("Unexpected objective_type", objective_type) def get_vectors_loss(ops, docs, prediction, distance): """Compute a loss based on a distance between the documents' vectors and the prediction. """ # The simplest way to implement this would be to vstack the # token.vector values, but that's a bit inefficient, especially on GPU. # Instead we fetch the index into the vectors table for each of our tokens, # and look them up all at once. This prevents data copying. ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs]) target = docs[0].vocab.vectors.data[ids] d_target, loss = distance(prediction, target) return loss, d_target def get_characters_loss(ops, docs, prediction, nr_char): """Compute a loss based on a number of characters predicted from the docs.""" target_ids = numpy.vstack([doc.to_utf8_array(nr_char=nr_char) for doc in docs]) target_ids = target_ids.reshape((-1,)) target = ops.asarray(to_categorical(target_ids, n_classes=256), dtype="f") target = target.reshape((-1, 256 * nr_char)) diff = prediction - target loss = (diff ** 2).sum() d_target = diff / float(prediction.shape[0]) return loss, d_target def create_pretraining_model(nlp, pretrain_config): """Define a network for the pretraining. We simply add an output layer onto the tok2vec input model. The tok2vec input model needs to be a model that takes a batch of Doc objects (as a list), and returns a list of arrays. Each array in the output needs to have one row per token in the doc. The actual tok2vec layer is stored as a reference, and only this bit will be serialized to file and read back in when calling the 'train' command. """ component = nlp.get_pipe(pretrain_config["component"]) if pretrain_config.get("layer"): tok2vec = component.model.get_ref(pretrain_config["layer"]) else: tok2vec = component.model # TODO maxout_pieces = 3 hidden_size = 300 if pretrain_config["objective"]["type"] == "vectors": model = build_cloze_multi_task_model( nlp.vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces ) elif pretrain_config["objective"]["type"] == "characters": model = build_cloze_characters_multi_task_model( nlp.vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces, nr_char=pretrain_config["objective"]["n_characters"], ) model.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")]) set_dropout_rate(model, pretrain_config["dropout"]) return model class ProgressTracker: def __init__(self, frequency=1000000): self.loss = 0.0 self.prev_loss = 0.0 self.nr_word = 0 self.words_per_epoch = Counter() self.frequency = frequency self.last_time = time.time() self.last_update = 0 self.epoch_loss = 0.0 def update(self, epoch, loss, docs): self.loss += loss self.epoch_loss += loss words_in_batch = sum(len(doc) for doc in docs) self.words_per_epoch[epoch] += words_in_batch self.nr_word += words_in_batch words_since_update = self.nr_word - self.last_update if words_since_update >= self.frequency: wps = words_since_update / (time.time() - self.last_time) self.last_update = self.nr_word self.last_time = time.time() loss_per_word = self.loss - self.prev_loss status = ( epoch, self.nr_word, _smart_round(self.loss, width=10), _smart_round(loss_per_word, width=6), int(wps), ) self.prev_loss = float(self.loss) return status else: return None def _smart_round(figure, width=10, max_decimal=4): """Round large numbers as integers, smaller numbers as decimals.""" n_digits = len(str(int(figure))) n_decimal = width - (n_digits + 1) if n_decimal <= 1: return str(int(figure)) else: n_decimal = min(n_decimal, max_decimal) format_str = "%." + str(n_decimal) + "f" return format_str % figure def verify_cli_args(config_path, output_dir, resume_path, epoch_resume): if not config_path or not config_path.exists(): msg.fail("Config file not found", config_path, exits=1) if output_dir.exists() and [p for p in output_dir.iterdir()]: if resume_path: msg.warn( "Output directory is not empty.", "If you're resuming a run in this directory, the old weights " "for the consecutive epochs will be overwritten with the new ones.", ) else: msg.warn( "Output directory is not empty. ", "It is better to use an empty directory or refer to a new output path, " "then the new directory will be created for you.", ) if resume_path is not None: model_name = re.search(r"model\d+\.bin", str(resume_path)) if not model_name and not epoch_resume: msg.fail( "You have to use the --epoch-resume setting when using a renamed weight file for --resume-path", exits=True, ) elif not model_name and epoch_resume < 0: msg.fail( f"The argument --epoch-resume has to be greater or equal to 0. {epoch_resume} is invalid", exits=True, )