import pytest from spacy.matcher import Matcher from spacy.errors import MatchPatternError from spacy.schemas import validate_token_pattern # (pattern, num errors with validation, num errors identified with minimal # checks) TEST_PATTERNS = [ # Bad patterns flagged in all cases ([{"XX": "foo"}], 1, 1), ([{"IS_ALPHA": {"==": True}}, {"LIKE_NUM": None}], 2, 1), ([{"IS_PUNCT": True, "OP": "$"}], 1, 1), ([{"_": "foo"}], 1, 1), ('[{"TEXT": "foo"}, {"LOWER": "bar"}]', 1, 1), ([{"ENT_IOB": "foo"}], 1, 1), ([1, 2, 3], 3, 1), # Bad patterns flagged outside of Matcher ([{"_": {"foo": "bar", "baz": {"IN": "foo"}}}], 2, 0), # prev: (1, 0) # Bad patterns not flagged with minimal checks ([{"LENGTH": "2", "TEXT": 2}, {"LOWER": "test"}], 2, 0), ([{"LENGTH": {"IN": [1, 2, "3"]}}, {"POS": {"IN": "VERB"}}], 4, 0), # prev: (2, 0) ([{"LENGTH": {"VALUE": 5}}], 2, 0), # prev: (1, 0) ([{"TEXT": {"VALUE": "foo"}}], 2, 0), # prev: (1, 0) ([{"IS_DIGIT": -1}], 1, 0), ([{"ORTH": -1}], 1, 0), ([{"ENT_ID": -1}], 1, 0), ([{"ENT_KB_ID": -1}], 1, 0), # Good patterns ([{"TEXT": "foo"}, {"LOWER": "bar"}], 0, 0), ([{"LEMMA": {"IN": ["love", "like"]}}, {"POS": "DET", "OP": "?"}], 0, 0), ([{"LIKE_NUM": True, "LENGTH": {">=": 5}}], 0, 0), ([{"LENGTH": 2}], 0, 0), ([{"LOWER": {"REGEX": "^X", "NOT_IN": ["XXX", "XY"]}}], 0, 0), ([{"NORM": "a"}, {"POS": {"IN": ["NOUN"]}}], 0, 0), ([{"_": {"foo": {"NOT_IN": ["bar", "baz"]}, "a": 5, "b": {">": 10}}}], 0, 0), ([{"orth": "foo"}], 0, 0), # prev: xfail ([{"IS_SENT_START": True}], 0, 0), ([{"SENT_START": True}], 0, 0), ([{"ENT_ID": "STRING"}], 0, 0), ([{"ENT_KB_ID": "STRING"}], 0, 0), ] @pytest.mark.parametrize( "pattern", [[{"XX": "y"}, {"LENGTH": "2"}, {"TEXT": {"IN": 5}}]] ) def test_matcher_pattern_validation(en_vocab, pattern): matcher = Matcher(en_vocab, validate=True) with pytest.raises(MatchPatternError): matcher.add("TEST", [pattern]) @pytest.mark.parametrize("pattern,n_errors,_", TEST_PATTERNS) def test_pattern_validation(pattern, n_errors, _): errors = validate_token_pattern(pattern) assert len(errors) == n_errors @pytest.mark.parametrize("pattern,n_errors,n_min_errors", TEST_PATTERNS) def test_minimal_pattern_validation(en_vocab, pattern, n_errors, n_min_errors): matcher = Matcher(en_vocab) if n_min_errors > 0: with pytest.raises(ValueError): matcher.add("TEST", [pattern]) elif n_errors == 0: matcher.add("TEST", [pattern]) def test_pattern_errors(en_vocab): matcher = Matcher(en_vocab) # normalize "regex" to upper like "text" matcher.add("TEST1", [[{"text": {"regex": "regex"}}]]) # error if subpattern attribute isn't recognized and processed with pytest.raises(MatchPatternError): matcher.add("TEST2", [[{"TEXT": {"XX": "xx"}}]])