from typing import Dict, List, Union, Optional from enum import Enum from pydantic import BaseModel, Field, ValidationError, validator from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool from collections import defaultdict from .attrs import NAMES def validate(schema, obj): """Validate data against a given pydantic schema. obj (dict): JSON-serializable data to validate. schema (pydantic.BaseModel): The schema to validate against. RETURNS (list): A list of error messages, if available. """ try: schema(**obj) return [] except ValidationError as e: errors = e.errors() data = defaultdict(list) for error in errors: err_loc = " -> ".join([str(p) for p in error.get("loc", [])]) data[err_loc].append(error.get("msg")) return [f"[{loc}] {', '.join(msg)}" for loc, msg in data.items()] # Matcher token patterns def validate_token_pattern(obj): # Try to convert non-string keys (e.g. {ORTH: "foo"} -> {"ORTH": "foo"}) get_key = lambda k: NAMES[k] if isinstance(k, int) and k < len(NAMES) else k if isinstance(obj, list): converted = [] for pattern in obj: if isinstance(pattern, dict): pattern = {get_key(k): v for k, v in pattern.items()} converted.append(pattern) obj = converted return validate(TokenPatternSchema, {"pattern": obj}) class TokenPatternString(BaseModel): REGEX: Optional[StrictStr] IN: Optional[List[StrictStr]] NOT_IN: Optional[List[StrictStr]] class Config: extra = "forbid" @validator("*", pre=True, whole=True) def raise_for_none(cls, v): if v is None: raise ValueError("None / null is not allowed") return v class TokenPatternNumber(BaseModel): REGEX: Optional[StrictStr] = None IN: Optional[List[StrictInt]] = None NOT_IN: Optional[List[StrictInt]] = None EQ: Union[StrictInt, StrictFloat] = Field(None, alias="==") GEQ: Union[StrictInt, StrictFloat] = Field(None, alias=">=") LEQ: Union[StrictInt, StrictFloat] = Field(None, alias="<=") GT: Union[StrictInt, StrictFloat] = Field(None, alias=">") LT: Union[StrictInt, StrictFloat] = Field(None, alias="<") class Config: extra = "forbid" @validator("*", pre=True, whole=True) def raise_for_none(cls, v): if v is None: raise ValueError("None / null is not allowed") return v class TokenPatternOperator(str, Enum): plus: StrictStr = "+" start: StrictStr = "*" question: StrictStr = "?" exclamation: StrictStr = "!" StringValue = Union[TokenPatternString, StrictStr] NumberValue = Union[TokenPatternNumber, StrictInt, StrictFloat] UnderscoreValue = Union[ TokenPatternString, TokenPatternNumber, str, int, float, list, bool, ] class TokenPattern(BaseModel): orth: Optional[StringValue] = None text: Optional[StringValue] = None lower: Optional[StringValue] = None pos: Optional[StringValue] = None tag: Optional[StringValue] = None dep: Optional[StringValue] = None lemma: Optional[StringValue] = None shape: Optional[StringValue] = None ent_type: Optional[StringValue] = None norm: Optional[StringValue] = None length: Optional[NumberValue] = None spacy: Optional[StrictBool] = None is_alpha: Optional[StrictBool] = None is_ascii: Optional[StrictBool] = None is_digit: Optional[StrictBool] = None is_lower: Optional[StrictBool] = None is_upper: Optional[StrictBool] = None is_title: Optional[StrictBool] = None is_punct: Optional[StrictBool] = None is_space: Optional[StrictBool] = None is_bracket: Optional[StrictBool] = None is_quote: Optional[StrictBool] = None is_left_punct: Optional[StrictBool] = None is_right_punct: Optional[StrictBool] = None is_currency: Optional[StrictBool] = None is_stop: Optional[StrictBool] = None is_sent_start: Optional[StrictBool] = None like_num: Optional[StrictBool] = None like_url: Optional[StrictBool] = None like_email: Optional[StrictBool] = None op: Optional[TokenPatternOperator] = None underscore: Optional[Dict[StrictStr, UnderscoreValue]] = Field(None, alias="_") class Config: extra = "forbid" allow_population_by_field_name = True alias_generator = lambda value: value.upper() @validator("*", pre=True) def raise_for_none(cls, v): if v is None: raise ValueError("None / null is not allowed") return v class TokenPatternSchema(BaseModel): pattern: List[TokenPattern] = Field(..., minItems=1) class Config: extra = "forbid" # Model meta class ModelMetaSchema(BaseModel): # fmt: off lang: StrictStr = Field(..., title="Two-letter language code, e.g. 'en'") name: StrictStr = Field(..., title="Model name") version: StrictStr = Field(..., title="Model version") spacy_version: Optional[StrictStr] = Field(None, title="Compatible spaCy version identifier") parent_package: Optional[StrictStr] = Field("spacy", title="Name of parent spaCy package, e.g. spacy or spacy-nightly") pipeline: Optional[List[StrictStr]] = Field([], title="Names of pipeline components") description: Optional[StrictStr] = Field(None, title="Model description") license: Optional[StrictStr] = Field(None, title="Model license") author: Optional[StrictStr] = Field(None, title="Model author name") email: Optional[StrictStr] = Field(None, title="Model author email") url: Optional[StrictStr] = Field(None, title="Model author URL") sources: Optional[Union[List[StrictStr], Dict[str, str]]] = Field(None, title="Training data sources") vectors: Optional[Dict[str, int]] = Field(None, title="Included word vectors") accuracy: Optional[Dict[str, Union[float, int]]] = Field(None, title="Accuracy numbers") speed: Optional[Dict[str, Union[float, int]]] = Field(None, title="Speed evaluation numbers") # fmt: on # Training data object in "simple training style" class SimpleTrainingSchema(BaseModel): # TODO: write class Config: title = "Schema for training data dict in passed to nlp.update" extra = "forbid" # JSON training format class TrainingSchema(BaseModel): # TODO: write class Config: title = "Schema for training data in spaCy's JSON format" extra = "forbid"