//- 💫 DOCS > USAGE > COMMAND LINE INTERFACE include ../../_includes/_mixins p | As of v1.7.0, spaCy comes with new command line helpers to download and | link models and show useful debugging information. For a list of available | commands, type #[code python -m spacy --help]. +aside("Why python -m?") | The problem with a global entry point is that it's resolved by looking up | entries in your #[code PATH] environment variable. This can give you | unexpected results, especially when using #[code virtualenv]. For | instance, you may have spaCy installed on your system but not in your | current environment. The command will then execute the wrong | spaCy installation. #[code python -m] prevents fallbacks to system modules | and makes sure the correct version of spaCy is used. +h(2, "download") Download p | Download #[+a("/docs/usage/models") models] for spaCy. The downloader finds the | best-matching compatible version, uses pip to download the model as a | package and automatically creates a | #[+a("/docs/usage/models#usage") shortcut link] to load the model by name. | Direct downloads don't perform any compatibility checks and require the | model name to be specified with its version (e.g., #[code en_core_web_sm-1.2.0]). +code(false, "bash"). python -m spacy download [model] [--direct] +table(["Argument", "Type", "Description"]) +row +cell #[code model] +cell positional +cell Model name or shortcut (#[code en], #[code de], #[code vectors]). +row +cell #[code --direct], #[code -d] +cell flag +cell Force direct download of exact model version. +row +cell #[code --help], #[code -h] +cell flag +cell Show help message and available arguments. +h(2, "link") Link p | Create a #[+a("/docs/usage/models#usage") shortcut link] for a model, | either a Python package or a local directory. This will let you load | models from any location via #[code spacy.load()]. +code(false, "bash"). python -m spacy link [origin] [link_name] [--force] +table(["Argument", "Type", "Description"]) +row +cell #[code origin] +cell positional +cell Model name if package, or path to local directory. +row +cell #[code link_name] +cell positional +cell Name of the shortcut link to create. +row +cell #[code --force], #[code -f] +cell flag +cell Force overwriting of existing link. +row +cell #[code --help], #[code -h] +cell flag +cell Show help message and available arguments. +h(2, "info") Info p | Print information about your spaCy installation, models and local setup, | and generate #[+a("https://en.wikipedia.org/wiki/Markdown") Markdown]-formatted | markup to copy-paste into #[+a(gh("spacy") + "/issues") GitHub issues]. +code(false, "bash"). python -m spacy info [--markdown] python -m spacy info [model] [--markdown] +table(["Argument", "Type", "Description"]) +row +cell #[code model] +cell positional +cell Shortcut link of model (optional). +row +cell #[code --markdown], #[code -md] +cell flag +cell Print information as Markdown. +row +cell #[code --help], #[code -h] +cell flag +cell Show help message and available arguments. +h(2, "package") Package +tag experimental p | Generate a #[+a("/docs/usage/models#own-models") model Python package] | from an existing model data directory. All data files are copied over, | and the meta data can be entered directly from the command line. While | this feature is still experimental, the required file templates are | downloaded from #[+src(gh("spacy-dev-resources", "templates/model")) GitHub]. | This means you need to be connected to the internet to use this command. +code(false, "bash"). python -m spacy package [input_dir] [output_dir] [--force] +table(["Argument", "Type", "Description"]) +row +cell #[code input_dir] +cell positional +cell Path to directory containing model data. +row +cell #[code output_dir] +cell positional +cell Directory to create package folder in. +row +cell #[code --force], #[code -f] +cell flag +cell Force overwriting of existing folder in output directory. +row +cell #[code --help], #[code -h] +cell flag +cell Show help message and available arguments. +h(2, "train") Train +tag experimental p | Train a model. Expects data in spaCy's JSON format. +code(false, "bash"). python -m spacy train [lang] [output_dir] [train_data] [dev_data] [--n_iter] [--parser_L1] [--no_tagger] [--no_parser] [--no_ner] +table(["Argument", "Type", "Description"]) +row +cell #[code lang] +cell positional +cell Model language. +row +cell #[code output_dir] +cell positional +cell Directory to store model in. +row +cell #[code train_data] +cell positional +cell Location of JSON-formatted training data. +row +cell #[code dev_data] +cell positional +cell Location of JSON-formatted dev data (optional). +row +cell #[code --n_iter], #[code -n] +cell option +cell Number of iterations (default: #[code 15]). +row +cell #[code --parser_L1], #[code -L] +cell option +cell L1 regularization penalty for parser (default: #[code 0.0]). +row +cell #[code --no_tagger], #[code -T] +cell flag +cell Don't train tagger. +row +cell #[code --no_parser], #[code -P] +cell flag +cell Don't train parser. +row +cell #[code --no_ner], #[code -N] +cell flag +cell Don't train NER. +row +cell #[code --help], #[code -h] +cell flag +cell Show help message and available arguments.