# coding: utf8 from __future__ import unicode_literals from collections import defaultdict cimport numpy as np import numpy import numpy.linalg from libc.math cimport sqrt from .doc cimport token_by_start, token_by_end, get_token_attr from ..structs cimport TokenC, LexemeC from ..typedefs cimport flags_t, attr_t, hash_t from ..attrs cimport attr_id_t from ..parts_of_speech cimport univ_pos_t from ..util import normalize_slice from ..attrs cimport IS_PUNCT, IS_SPACE from ..lexeme cimport Lexeme from ..compat import is_config from ..errors import Errors, TempErrors from .underscore import Underscore, get_ext_args cdef class Span: """A slice from a Doc object.""" @classmethod def set_extension(cls, name, **kwargs): if cls.has_extension(name) and not kwargs.get('force', False): raise ValueError(Errors.E090.format(name=name, obj='Span')) Underscore.span_extensions[name] = get_ext_args(**kwargs) @classmethod def get_extension(cls, name): return Underscore.span_extensions.get(name) @classmethod def has_extension(cls, name): return name in Underscore.span_extensions def __cinit__(self, Doc doc, int start, int end, attr_t label=0, vector=None, vector_norm=None): """Create a `Span` object from the slice `doc[start : end]`. doc (Doc): The parent document. start (int): The index of the first token of the span. end (int): The index of the first token after the span. label (uint64): A label to attach to the Span, e.g. for named entities. vector (ndarray[ndim=1, dtype='float32']): A meaning representation of the span. RETURNS (Span): The newly constructed object. """ if not (0 <= start <= end <= len(doc)): raise IndexError(Errors.E035.format(start=start, end=end, length=len(doc))) self.doc = doc self.start = start self.start_char = self.doc[start].idx if start < self.doc.length else 0 self.end = end if end >= 1: self.end_char = self.doc[end - 1].idx + len(self.doc[end - 1]) else: self.end_char = 0 if label not in doc.vocab.strings: raise ValueError(Errors.E084.format(label=label)) self.label = label self._vector = vector self._vector_norm = vector_norm def __richcmp__(self, Span other, int op): if other is None: if op == 0 or op == 1 or op == 2: return False else: return True # Eq if op == 0: return self.start_char < other.start_char elif op == 1: return self.start_char <= other.start_char elif op == 2: return self.start_char == other.start_char and self.end_char == other.end_char elif op == 3: return self.start_char != other.start_char or self.end_char != other.end_char elif op == 4: return self.start_char > other.start_char elif op == 5: return self.start_char >= other.start_char def __hash__(self): return hash((self.doc, self.label, self.start_char, self.end_char)) def __len__(self): """Get the number of tokens in the span. RETURNS (int): The number of tokens in the span. """ self._recalculate_indices() if self.end < self.start: return 0 return self.end - self.start def __repr__(self): if is_config(python3=True): return self.text return self.text.encode('utf-8') def __getitem__(self, object i): """Get a `Token` or a `Span` object i (int or tuple): The index of the token within the span, or slice of the span to get. RETURNS (Token or Span): The token at `span[i]`. EXAMPLE: >>> span[0] >>> span[1:3] """ self._recalculate_indices() if isinstance(i, slice): start, end = normalize_slice(len(self), i.start, i.stop, i.step) return Span(self.doc, start + self.start, end + self.start) else: if i < 0: return self.doc[self.end + i] else: return self.doc[self.start + i] def __iter__(self): """Iterate over `Token` objects. YIELDS (Token): A `Token` object. """ self._recalculate_indices() for i in range(self.start, self.end): yield self.doc[i] @property def _(self): """User space for adding custom attribute extensions.""" return Underscore(Underscore.span_extensions, self, start=self.start_char, end=self.end_char) def as_doc(self): # TODO: fix """Create a `Doc` object view of the Span's data. This is mostly useful for C-typed interfaces. RETURNS (Doc): The `Doc` view of the span. """ cdef Doc doc = Doc(self.doc.vocab) doc.length = self.end-self.start doc.c = &self.doc.c[self.start] doc.mem = self.doc.mem doc.is_parsed = self.doc.is_parsed doc.is_tagged = self.doc.is_tagged doc.noun_chunks_iterator = self.doc.noun_chunks_iterator doc.user_hooks = self.doc.user_hooks doc.user_span_hooks = self.doc.user_span_hooks doc.user_token_hooks = self.doc.user_token_hooks doc.vector = self.vector doc.vector_norm = self.vector_norm for key, value in self.doc.cats.items(): if hasattr(key, '__len__') and len(key) == 3: cat_start, cat_end, cat_label = key if cat_start == self.start_char and cat_end == self.end_char: doc.cats[cat_label] = value return doc def merge(self, *args, **attributes): """Retokenize the document, such that the span is merged into a single token. **attributes: Attributes to assign to the merged token. By default, attributes are inherited from the syntactic root token of the span. RETURNS (Token): The newly merged token. """ return self.doc.merge(self.start_char, self.end_char, *args, **attributes) def similarity(self, other): """Make a semantic similarity estimate. The default estimate is cosine similarity using an average of word vectors. other (object): The object to compare with. By default, accepts `Doc`, `Span`, `Token` and `Lexeme` objects. RETURNS (float): A scalar similarity score. Higher is more similar. """ if 'similarity' in self.doc.user_span_hooks: self.doc.user_span_hooks['similarity'](self, other) if len(self) == 1 and hasattr(other, 'orth'): if self[0].orth == other.orth: return 1.0 elif hasattr(other, '__len__') and len(self) == len(other): for i in range(len(self)): if self[i].orth != getattr(other[i], 'orth', None): break else: return 1.0 if self.vector_norm == 0.0 or other.vector_norm == 0.0: return 0.0 return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm) def get_lca_matrix(self): """Calculates the lowest common ancestor matrix for a given `Span`. Returns LCA matrix containing the integer index of the ancestor, or -1 if no common ancestor is found (ex if span excludes a necessary ancestor). Apologies about the recursion, but the impact on performance is negligible given the natural limitations on the depth of a typical human sentence. """ def __pairwise_lca(token_j, token_k, lca_matrix, margins): offset = margins[0] token_k_head = token_k.head if token_k.head.i in range(*margins) else token_k token_j_head = token_j.head if token_j.head.i in range(*margins) else token_j token_j_i = token_j.i - offset token_k_i = token_k.i - offset if lca_matrix[token_j_i][token_k_i] != -2: return lca_matrix[token_j_i][token_k_i] elif token_j == token_k: lca_index = token_j_i elif token_k_head == token_j: lca_index = token_j_i elif token_j_head == token_k: lca_index = token_k_i elif (token_j_head == token_j) and (token_k_head == token_k): lca_index = -1 else: lca_index = __pairwise_lca(token_j_head, token_k_head, lca_matrix, margins) lca_matrix[token_j_i][token_k_i] = lca_index lca_matrix[token_k_i][token_j_i] = lca_index return lca_index lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32) lca_matrix.fill(-2) margins = [self.start, self.end] for j in range(len(self)): token_j = self[j] for k in range(len(self)): token_k = self[k] lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix, margins) lca_matrix[k][j] = lca_matrix[j][k] return lca_matrix cpdef np.ndarray to_array(self, object py_attr_ids): """Given a list of M attribute IDs, export the tokens to a numpy `ndarray` of shape `(N, M)`, where `N` is the length of the document. The values will be 32-bit integers. attr_ids (list[int]): A list of attribute ID ints. RETURNS (numpy.ndarray[long, ndim=2]): A feature matrix, with one row per word, and one column per attribute indicated in the input `attr_ids`. """ cdef int i, j cdef attr_id_t feature cdef np.ndarray[attr_t, ndim=2] output # Make an array from the attributes --- otherwise our inner loop is Python # dict iteration. cdef np.ndarray[attr_t, ndim=1] attr_ids = numpy.asarray(py_attr_ids, dtype=numpy.uint64) cdef int length = self.end - self.start output = numpy.ndarray(shape=(length, len(attr_ids)), dtype=numpy.uint64) for i in range(self.start, self.end): for j, feature in enumerate(attr_ids): output[i-self.start, j] = get_token_attr(&self.doc.c[i], feature) return output cpdef int _recalculate_indices(self) except -1: if self.end > self.doc.length \ or self.doc.c[self.start].idx != self.start_char \ or (self.doc.c[self.end-1].idx + self.doc.c[self.end-1].lex.length) != self.end_char: start = token_by_start(self.doc.c, self.doc.length, self.start_char) if self.start == -1: raise IndexError(Errors.E036.format(start=self.start_char)) end = token_by_end(self.doc.c, self.doc.length, self.end_char) if end == -1: raise IndexError(Errors.E037.format(end=self.end_char)) self.start = start self.end = end + 1 property vocab: """RETURNS (Vocab): The Span's Doc's vocab.""" def __get__(self): return self.doc.vocab property sent: """RETURNS (Span): The sentence span that the span is a part of.""" def __get__(self): if 'sent' in self.doc.user_span_hooks: return self.doc.user_span_hooks['sent'](self) # This should raise if we're not parsed. self.doc.sents cdef int n = 0 root = &self.doc.c[self.start] while root.head != 0: root += root.head n += 1 if n >= self.doc.length: raise RuntimeError(Errors.E038) return self.doc[root.l_edge:root.r_edge + 1] property has_vector: """RETURNS (bool): Whether a word vector is associated with the object. """ def __get__(self): if 'has_vector' in self.doc.user_span_hooks: return self.doc.user_span_hooks['has_vector'](self) elif self.vocab.vectors.data.size > 0: return any(token.has_vector for token in self) elif self.doc.tensor.size > 0: return True else: return False property vector: """A real-valued meaning representation. Defaults to an average of the token vectors. RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array representing the span's semantics. """ def __get__(self): if 'vector' in self.doc.user_span_hooks: return self.doc.user_span_hooks['vector'](self) if self._vector is None: self._vector = sum(t.vector for t in self) / len(self) return self._vector property vector_norm: """RETURNS (float): The L2 norm of the vector representation.""" def __get__(self): if 'vector_norm' in self.doc.user_span_hooks: return self.doc.user_span_hooks['vector'](self) cdef float value cdef double norm = 0 if self._vector_norm is None: norm = 0 for value in self.vector: norm += value * value self._vector_norm = sqrt(norm) if norm != 0 else 0 return self._vector_norm property sentiment: """RETURNS (float): A scalar value indicating the positivity or negativity of the span. """ def __get__(self): if 'sentiment' in self.doc.user_span_hooks: return self.doc.user_span_hooks['sentiment'](self) else: return sum([token.sentiment for token in self]) / len(self) property text: """RETURNS (unicode): The original verbatim text of the span.""" def __get__(self): text = self.text_with_ws if self[-1].whitespace_: text = text[:-1] return text property text_with_ws: """The text content of the span with a trailing whitespace character if the last token has one. RETURNS (unicode): The text content of the span (with trailing whitespace). """ def __get__(self): return u''.join([t.text_with_ws for t in self]) property noun_chunks: """Yields base noun-phrase `Span` objects, if the document has been syntactically parsed. A base noun phrase, or "NP chunk", is a noun phrase that does not permit other NPs to be nested within it – so no NP-level coordination, no prepositional phrases, and no relative clauses. YIELDS (Span): Base noun-phrase `Span` objects """ def __get__(self): if not self.doc.is_parsed: raise ValueError(Errors.E029) # Accumulate the result before beginning to iterate over it. This # prevents the tokenisation from being changed out from under us # during the iteration. The tricky thing here is that Span accepts # its tokenisation changing, so it's okay once we have the Span # objects. See Issue #375 spans = [] cdef attr_t label for start, end, label in self.doc.noun_chunks_iterator(self): spans.append(Span(self.doc, start, end, label=label)) for span in spans: yield span property root: """The token within the span that's highest in the parse tree. If there's a tie, the earliest is prefered. RETURNS (Token): The root token. EXAMPLE: The root token has the shortest path to the root of the sentence (or is the root itself). If multiple words are equally high in the tree, the first word is taken. For example: >>> toks = nlp(u'I like New York in Autumn.') Let's name the indices – easier than writing `toks[4]` etc. >>> i, like, new, york, in_, autumn, dot = range(len(toks)) The head of 'new' is 'York', and the head of "York" is "like" >>> toks[new].head.text 'York' >>> toks[york].head.text 'like' Create a span for "New York". Its root is "York". >>> new_york = toks[new:york+1] >>> new_york.root.text 'York' Here's a more complicated case, raised by issue #214: >>> toks = nlp(u'to, north and south carolina') >>> to, north, and_, south, carolina = toks >>> south.head.text, carolina.head.text ('north', 'to') Here "south" is a child of "north", which is a child of "carolina". Carolina is the root of the span: >>> south_carolina = toks[-2:] >>> south_carolina.root.text 'carolina' """ def __get__(self): self._recalculate_indices() if 'root' in self.doc.user_span_hooks: return self.doc.user_span_hooks['root'](self) # This should probably be called 'head', and the other one called # 'gov'. But we went with 'head' elsehwhere, and now we're stuck =/ cdef int i # First, we scan through the Span, and check whether there's a word # with head==0, i.e. a sentence root. If so, we can return it. The # longer the span, the more likely it contains a sentence root, and # in this case we return in linear time. for i in range(self.start, self.end): if self.doc.c[i].head == 0: return self.doc[i] # If we don't have a sentence root, we do something that's not so # algorithmically clever, but I think should be quite fast, # especially for short spans. # For each word, we count the path length, and arg min this measure. # We could use better tree logic to save steps here...But I # think this should be okay. cdef int current_best = self.doc.length cdef int root = -1 for i in range(self.start, self.end): if self.start <= (i+self.doc.c[i].head) < self.end: continue words_to_root = _count_words_to_root(&self.doc.c[i], self.doc.length) if words_to_root < current_best: current_best = words_to_root root = i if root == -1: return self.doc[self.start] else: return self.doc[root] property lefts: """ Tokens that are to the left of the span, whose head is within the `Span`. YIELDS (Token):A left-child of a token of the span. """ def __get__(self): for token in reversed(self): # Reverse, so we get tokens in order for left in token.lefts: if left.i < self.start: yield left property rights: """Tokens that are to the right of the Span, whose head is within the `Span`. YIELDS (Token): A right-child of a token of the span. """ def __get__(self): for token in self: for right in token.rights: if right.i >= self.end: yield right property n_lefts: """RETURNS (int): The number of leftward immediate children of the span, in the syntactic dependency parse. """ def __get__(self): return len(list(self.lefts)) property n_rights: """RETURNS (int): The number of rightward immediate children of the span, in the syntactic dependency parse. """ def __get__(self): return len(list(self.rights)) property subtree: """Tokens that descend from tokens in the span, but fall outside it. YIELDS (Token): A descendant of a token within the span. """ def __get__(self): for word in self.lefts: yield from word.subtree yield from self for word in self.rights: yield from word.subtree property ent_id: """RETURNS (uint64): The entity ID.""" def __get__(self): return self.root.ent_id def __set__(self, hash_t key): raise NotImplementedError(TempErrors.T007.format(attr='ent_id')) property ent_id_: """RETURNS (unicode): The (string) entity ID.""" def __get__(self): return self.root.ent_id_ def __set__(self, hash_t key): raise NotImplementedError(TempErrors.T007.format(attr='ent_id_')) property orth_: """Verbatim text content (identical to Span.text). Exists mostly for consistency with other attributes. RETURNS (unicode): The span's text.""" def __get__(self): return self.text property lemma_: """RETURNS (unicode): The span's lemma.""" def __get__(self): return ' '.join([t.lemma_ for t in self]).strip() property upper_: """Deprecated. Use Span.text.upper() instead.""" def __get__(self): return ''.join([t.text_with_ws.upper() for t in self]).strip() property lower_: """Deprecated. Use Span.text.lower() instead.""" def __get__(self): return ''.join([t.text_with_ws.lower() for t in self]).strip() property string: """Deprecated: Use Span.text_with_ws instead.""" def __get__(self): return ''.join([t.text_with_ws for t in self]) property label_: """RETURNS (unicode): The span's label.""" def __get__(self): return self.doc.vocab.strings[self.label] cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1: # Don't allow spaces to be the root, if there are # better candidates if Lexeme.c_check_flag(token.lex, IS_SPACE) and token.l_kids == 0 and token.r_kids == 0: return sent_length-1 if Lexeme.c_check_flag(token.lex, IS_PUNCT) and token.l_kids == 0 and token.r_kids == 0: return sent_length-1 cdef int n = 0 while token.head != 0: token += token.head n += 1 if n >= sent_length: raise RuntimeError(Errors.E039) return n