{# This is a template for training configs used for the quickstart widget in the docs and the init config command. It encodes various best practices and can help generate the best possible configuration, given a user's requirements. #} {%- set use_transformer = hardware != "cpu" -%} {%- set transformer = transformer_data[optimize] if use_transformer else {} -%} [paths] train = null dev = null [system] {% if use_transformer -%} gpu_allocator = "pytorch" {% else -%} gpu_allocator = null {% endif %} [nlp] lang = "{{ lang }}" {%- set no_tok2vec = components|length == 1 and (("textcat" in components or "textcat_multilabel" in components) and optimize == "efficiency")-%} {%- if not no_tok2vec and ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "entity_linker" in components or "textcat" in components or "textcat_multilabel" in components) -%} {%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components %} {%- else -%} {%- set full_pipeline = components %} {%- endif %} pipeline = {{ full_pipeline|pprint()|replace("'", '"')|safe }} batch_size = {{ 128 if hardware == "gpu" else 1000 }} [components] {# TRANSFORMER PIPELINE #} {%- if use_transformer -%} [components.transformer] factory = "transformer" [components.transformer.model] @architectures = "spacy-transformers.TransformerModel.v3" name = "{{ transformer["name"] }}" tokenizer_config = {"use_fast": true} [components.transformer.model.get_spans] @span_getters = "spacy-transformers.strided_spans.v1" window = 128 stride = 96 {% if "morphologizer" in components %} [components.morphologizer] factory = "morphologizer" [components.morphologizer.model] @architectures = "spacy.Tagger.v1" nO = null [components.morphologizer.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 [components.morphologizer.model.tok2vec.pooling] @layers = "reduce_mean.v1" {%- endif %} {% if "tagger" in components %} [components.tagger] factory = "tagger" [components.tagger.model] @architectures = "spacy.Tagger.v1" nO = null [components.tagger.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 [components.tagger.model.tok2vec.pooling] @layers = "reduce_mean.v1" {%- endif %} {% if "parser" in components -%} [components.parser] factory = "parser" [components.parser.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "parser" extra_state_tokens = false hidden_width = 128 maxout_pieces = 3 use_upper = false nO = null [components.parser.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 [components.parser.model.tok2vec.pooling] @layers = "reduce_mean.v1" {%- endif %} {% if "ner" in components -%} [components.ner] factory = "ner" [components.ner.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "ner" extra_state_tokens = false hidden_width = 64 maxout_pieces = 2 use_upper = false nO = null [components.ner.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 [components.ner.model.tok2vec.pooling] @layers = "reduce_mean.v1" {% endif -%} {% if "entity_linker" in components -%} [components.entity_linker] factory = "entity_linker" get_candidates = {"@misc":"spacy.CandidateGenerator.v1"} incl_context = true incl_prior = true [components.entity_linker.model] @architectures = "spacy.EntityLinker.v1" nO = null [components.entity_linker.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 [components.entity_linker.model.tok2vec.pooling] @layers = "reduce_mean.v1" {% endif -%} {% if "textcat" in components %} [components.textcat] factory = "textcat" {% if optimize == "accuracy" %} [components.textcat.model] @architectures = "spacy.TextCatEnsemble.v2" nO = null [components.textcat.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 [components.textcat.model.tok2vec.pooling] @layers = "reduce_mean.v1" [components.textcat.model.linear_model] @architectures = "spacy.TextCatBOW.v2" exclusive_classes = true ngram_size = 1 no_output_layer = false {% else -%} [components.textcat.model] @architectures = "spacy.TextCatBOW.v2" exclusive_classes = true ngram_size = 1 no_output_layer = false {%- endif %} {%- endif %} {% if "textcat_multilabel" in components %} [components.textcat_multilabel] factory = "textcat_multilabel" {% if optimize == "accuracy" %} [components.textcat_multilabel.model] @architectures = "spacy.TextCatEnsemble.v2" nO = null [components.textcat_multilabel.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 [components.textcat_multilabel.model.tok2vec.pooling] @layers = "reduce_mean.v1" [components.textcat_multilabel.model.linear_model] @architectures = "spacy.TextCatBOW.v2" exclusive_classes = false ngram_size = 1 no_output_layer = false {% else -%} [components.textcat_multilabel.model] @architectures = "spacy.TextCatBOW.v2" exclusive_classes = false ngram_size = 1 no_output_layer = false {%- endif %} {%- endif %} {# NON-TRANSFORMER PIPELINE #} {% else -%} {% if not no_tok2vec-%} [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v2" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v2" width = ${components.tok2vec.model.encode.width} {% if has_letters -%} attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"] rows = [5000, 2500, 2500, 2500] {% else -%} attrs = ["ORTH", "SHAPE"] rows = [5000, 2500] {% endif -%} include_static_vectors = {{ "true" if optimize == "accuracy" else "false" }} [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = {{ 96 if optimize == "efficiency" else 256 }} depth = {{ 4 if optimize == "efficiency" else 8 }} window_size = 1 maxout_pieces = 3 {% endif -%} {% if "morphologizer" in components %} [components.morphologizer] factory = "morphologizer" [components.morphologizer.model] @architectures = "spacy.Tagger.v1" nO = null [components.morphologizer.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} {%- endif %} {% if "tagger" in components %} [components.tagger] factory = "tagger" [components.tagger.model] @architectures = "spacy.Tagger.v1" nO = null [components.tagger.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} {%- endif %} {% if "parser" in components -%} [components.parser] factory = "parser" [components.parser.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "parser" extra_state_tokens = false hidden_width = 128 maxout_pieces = 3 use_upper = true nO = null [components.parser.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} {%- endif %} {% if "ner" in components %} [components.ner] factory = "ner" [components.ner.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "ner" extra_state_tokens = false hidden_width = 64 maxout_pieces = 2 use_upper = true nO = null [components.ner.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} {% endif %} {% if "entity_linker" in components -%} [components.entity_linker] factory = "entity_linker" get_candidates = {"@misc":"spacy.CandidateGenerator.v1"} incl_context = true incl_prior = true [components.entity_linker.model] @architectures = "spacy.EntityLinker.v1" nO = null [components.entity_linker.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} {% endif %} {% if "textcat" in components %} [components.textcat] factory = "textcat" {% if optimize == "accuracy" %} [components.textcat.model] @architectures = "spacy.TextCatEnsemble.v2" nO = null [components.textcat.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} [components.textcat.model.linear_model] @architectures = "spacy.TextCatBOW.v2" exclusive_classes = true ngram_size = 1 no_output_layer = false {% else -%} [components.textcat.model] @architectures = "spacy.TextCatBOW.v2" exclusive_classes = true ngram_size = 1 no_output_layer = false {%- endif %} {%- endif %} {% if "textcat_multilabel" in components %} [components.textcat_multilabel] factory = "textcat_multilabel" {% if optimize == "accuracy" %} [components.textcat_multilabel.model] @architectures = "spacy.TextCatEnsemble.v2" nO = null [components.textcat_multilabel.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} [components.textcat_multilabel.model.linear_model] @architectures = "spacy.TextCatBOW.v2" exclusive_classes = false ngram_size = 1 no_output_layer = false {% else -%} [components.textcat_multilabel.model] @architectures = "spacy.TextCatBOW.v2" exclusive_classes = false ngram_size = 1 no_output_layer = false {%- endif %} {%- endif %} {% endif %} {% for pipe in components %} {% if pipe not in ["tagger", "morphologizer", "parser", "ner", "textcat", "textcat_multilabel", "entity_linker"] %} {# Other components defined by the user: we just assume they're factories #} [components.{{ pipe }}] factory = "{{ pipe }}" {% endif %} {% endfor %} [corpora] [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths.train} max_length = 0 [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths.dev} max_length = 0 [training] {% if use_transformer -%} accumulate_gradient = {{ transformer["size_factor"] }} {% endif -%} dev_corpus = "corpora.dev" train_corpus = "corpora.train" [training.optimizer] @optimizers = "Adam.v1" {% if use_transformer -%} [training.optimizer.learn_rate] @schedules = "warmup_linear.v1" warmup_steps = 250 total_steps = 20000 initial_rate = 5e-5 {% endif %} {% if use_transformer %} [training.batcher] @batchers = "spacy.batch_by_padded.v1" discard_oversize = true size = 2000 buffer = 256 {%- else %} [training.batcher] @batchers = "spacy.batch_by_words.v1" discard_oversize = false tolerance = 0.2 [training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 1000 compound = 1.001 {% endif %} [initialize] {% if use_transformer or optimize == "efficiency" or not word_vectors -%} vectors = ${paths.vectors} {% else -%} vectors = "{{ word_vectors }}" {% endif -%}