from typing import Optional, List from thinc.api import chain, clone, concatenate, with_array, with_padded from thinc.api import Model, noop, list2ragged, ragged2list from thinc.api import FeatureExtractor, HashEmbed from thinc.api import expand_window, residual, Maxout, Mish, PyTorchLSTM from thinc.types import Floats2d from ...tokens import Doc from ...util import registry from ...ml import _character_embed from ..staticvectors import StaticVectors from ...pipeline.tok2vec import Tok2VecListener from ...attrs import ORTH, NORM, PREFIX, SUFFIX, SHAPE @registry.architectures.register("spacy.Tok2VecListener.v1") def tok2vec_listener_v1(width: int, upstream: str = "*"): tok2vec = Tok2VecListener(upstream_name=upstream, width=width) return tok2vec @registry.architectures.register("spacy.HashEmbedCNN.v1") def build_hash_embed_cnn_tok2vec( *, width: int, depth: int, embed_size: int, window_size: int, maxout_pieces: int, subword_features: bool, dropout: Optional[float], pretrained_vectors: Optional[bool] ) -> Model[List[Doc], List[Floats2d]]: """Build spaCy's 'standard' tok2vec layer, which uses hash embedding with subword features and a CNN with layer-normalized maxout.""" return build_Tok2Vec_model( embed=MultiHashEmbed( width=width, rows=embed_size, also_embed_subwords=subword_features, also_use_static_vectors=bool(pretrained_vectors), ), encode=MaxoutWindowEncoder( width=width, depth=depth, window_size=window_size, maxout_pieces=maxout_pieces, ), ) @registry.architectures.register("spacy.Tok2Vec.v1") def build_Tok2Vec_model( embed: Model[List[Doc], List[Floats2d]], encode: Model[List[Floats2d], List[Floats2d]], ) -> Model[List[Doc], List[Floats2d]]: receptive_field = encode.attrs.get("receptive_field", 0) tok2vec = chain(embed, with_array(encode, pad=receptive_field)) tok2vec.set_dim("nO", encode.get_dim("nO")) tok2vec.set_ref("embed", embed) tok2vec.set_ref("encode", encode) return tok2vec @registry.architectures.register("spacy.MultiHashEmbed.v1") def MultiHashEmbed( width: int, rows: int, also_embed_subwords: bool, also_use_static_vectors: bool ): cols = [NORM, PREFIX, SUFFIX, SHAPE, ORTH] seed = 7 def make_hash_embed(feature): nonlocal seed seed += 1 return HashEmbed( width, rows if feature == NORM else rows // 2, column=cols.index(feature), seed=seed, dropout=0.0, ) if also_embed_subwords: embeddings = [ make_hash_embed(NORM), make_hash_embed(PREFIX), make_hash_embed(SUFFIX), make_hash_embed(SHAPE), ] else: embeddings = [make_hash_embed(NORM)] concat_size = width * (len(embeddings) + also_use_static_vectors) if also_use_static_vectors: model = chain( concatenate( chain( FeatureExtractor(cols), list2ragged(), with_array(concatenate(*embeddings)), ), StaticVectors(width, dropout=0.0), ), with_array(Maxout(width, concat_size, nP=3, dropout=0.0, normalize=True)), ragged2list(), ) else: model = chain( FeatureExtractor(cols), list2ragged(), with_array(concatenate(*embeddings)), with_array(Maxout(width, concat_size, nP=3, dropout=0.0, normalize=True)), ragged2list(), ) return model @registry.architectures.register("spacy.CharacterEmbed.v1") def CharacterEmbed(width: int, rows: int, nM: int, nC: int): model = chain( concatenate( chain(_character_embed.CharacterEmbed(nM=nM, nC=nC), list2ragged()), chain( FeatureExtractor([NORM]), list2ragged(), with_array(HashEmbed(nO=width, nV=rows, column=0, seed=5)), ), ), with_array(Maxout(width, nM * nC + width, nP=3, normalize=True, dropout=0.0)), ragged2list(), ) return model @registry.architectures.register("spacy.MaxoutWindowEncoder.v1") def MaxoutWindowEncoder(width: int, window_size: int, maxout_pieces: int, depth: int): cnn = chain( expand_window(window_size=window_size), Maxout( nO=width, nI=width * ((window_size * 2) + 1), nP=maxout_pieces, dropout=0.0, normalize=True, ), ) model = clone(residual(cnn), depth) model.set_dim("nO", width) model.attrs["receptive_field"] = window_size * depth return model @registry.architectures.register("spacy.MishWindowEncoder.v1") def MishWindowEncoder(width, window_size, depth): cnn = chain( expand_window(window_size=window_size), Mish(nO=width, nI=width * ((window_size * 2) + 1), dropout=0.0, normalize=True), ) model = clone(residual(cnn), depth) model.set_dim("nO", width) return model @registry.architectures.register("spacy.TorchBiLSTMEncoder.v1") def BiLSTMEncoder(width, depth, dropout): if depth == 0: return noop() return with_padded(PyTorchLSTM(width, width, bi=True, depth=depth, dropout=dropout))