# cython: infer_types=True, cdivision=True, boundscheck=False from __future__ import print_function from cymem.cymem cimport Pool cimport numpy as np from itertools import islice from libcpp.vector cimport vector from libc.string cimport memset from libc.stdlib cimport calloc, free import srsly from ._parser_internals.stateclass cimport StateClass from ..ml.parser_model cimport alloc_activations, free_activations from ..ml.parser_model cimport predict_states, arg_max_if_valid from ..ml.parser_model cimport WeightsC, ActivationsC, SizesC, cpu_log_loss from ..ml.parser_model cimport get_c_weights, get_c_sizes from ..tokens.doc cimport Doc from ..errors import Errors, Warnings from .. import util from ..util import create_default_optimizer from thinc.api import set_dropout_rate import numpy.random import numpy import warnings cdef class Parser(Pipe): """ Base class of the DependencyParser and EntityRecognizer. """ def __init__( self, Vocab vocab, model, name="base_parser", moves=None, *, update_with_oracle_cut_size, multitasks=tuple(), min_action_freq, learn_tokens, ): """Create a Parser. vocab (Vocab): The vocabulary object. Must be shared with documents to be processed. The value is set to the `.vocab` attribute. **cfg: Configuration parameters. Set to the `.cfg` attribute. If it doesn't include a value for 'moves', a new instance is created with `self.TransitionSystem()`. This defines how the parse-state is created, updated and evaluated. """ self.vocab = vocab self.name = name cfg = { "moves": moves, "update_with_oracle_cut_size": update_with_oracle_cut_size, "multitasks": list(multitasks), "min_action_freq": min_action_freq, "learn_tokens": learn_tokens } if moves is None: # defined by EntityRecognizer as a BiluoPushDown moves = self.TransitionSystem(self.vocab.strings) self.moves = moves self.model = model if self.moves.n_moves != 0: self.set_output(self.moves.n_moves) self.cfg = cfg self._multitasks = [] for multitask in cfg["multitasks"]: self.add_multitask_objective(multitask) self._rehearsal_model = None def __getnewargs_ex__(self): """This allows pickling the Parser and its keyword-only init arguments""" args = (self.vocab, self.model, self.name, self.moves) return args, self.cfg @property def move_names(self): names = [] for i in range(self.moves.n_moves): name = self.moves.move_name(self.moves.c[i].move, self.moves.c[i].label) # Explicitly removing the internal "U-" token used for blocking entities if name != "U-": names.append(name) return names @property def labels(self): class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)] return class_names @property def tok2vec(self): """Return the embedding and convolutional layer of the model.""" return self.model.get_ref("tok2vec") @property def postprocesses(self): # Available for subclasses, e.g. to deprojectivize return [] def add_label(self, label): resized = False for action in self.moves.action_types: added = self.moves.add_action(action, label) if added: resized = True if resized: self._resize() return 1 return 0 def _resize(self): self.model.attrs["resize_output"](self.model, self.moves.n_moves) if self._rehearsal_model not in (True, False, None): self._rehearsal_model.attrs["resize_output"]( self._rehearsal_model, self.moves.n_moves ) def add_multitask_objective(self, target): # Defined in subclasses, to avoid circular import raise NotImplementedError def init_multitask_objectives(self, get_examples, pipeline, **cfg): """Setup models for secondary objectives, to benefit from multi-task learning. This method is intended to be overridden by subclasses. For instance, the dependency parser can benefit from sharing an input representation with a label prediction model. These auxiliary models are discarded after training. """ pass def use_params(self, params): # Can't decorate cdef class :(. Workaround. with self.model.use_params(params): yield def __call__(self, Doc doc): """Apply the parser or entity recognizer, setting the annotations onto the `Doc` object. doc (Doc): The document to be processed. """ states = self.predict([doc]) self.set_annotations([doc], states) return doc def pipe(self, docs, *, int batch_size=256): """Process a stream of documents. stream: The sequence of documents to process. batch_size (int): Number of documents to accumulate into a working set. YIELDS (Doc): Documents, in order. """ cdef Doc doc for batch in util.minibatch(docs, size=batch_size): batch_in_order = list(batch) by_length = sorted(batch, key=lambda doc: len(doc)) for subbatch in util.minibatch(by_length, size=max(batch_size//4, 2)): subbatch = list(subbatch) parse_states = self.predict(subbatch) self.set_annotations(subbatch, parse_states) yield from batch_in_order def predict(self, docs): if isinstance(docs, Doc): docs = [docs] if not any(len(doc) for doc in docs): result = self.moves.init_batch(docs) self._resize() return result return self.greedy_parse(docs, drop=0.0) def greedy_parse(self, docs, drop=0.): cdef vector[StateC*] states cdef StateClass state set_dropout_rate(self.model, drop) batch = self.moves.init_batch(docs) # This is pretty dirty, but the NER can resize itself in init_batch, # if labels are missing. We therefore have to check whether we need to # expand our model output. self._resize() model = self.model.predict(docs) weights = get_c_weights(model) for state in batch: if not state.is_final(): states.push_back(state.c) sizes = get_c_sizes(model, states.size()) with nogil: self._parseC(&states[0], weights, sizes) model.clear_memory() del model return batch cdef void _parseC(self, StateC** states, WeightsC weights, SizesC sizes) nogil: cdef int i, j cdef vector[StateC*] unfinished cdef ActivationsC activations = alloc_activations(sizes) while sizes.states >= 1: predict_states(&activations, states, &weights, sizes) # Validate actions, argmax, take action. self.c_transition_batch(states, activations.scores, sizes.classes, sizes.states) for i in range(sizes.states): if not states[i].is_final(): unfinished.push_back(states[i]) for i in range(unfinished.size()): states[i] = unfinished[i] sizes.states = unfinished.size() unfinished.clear() free_activations(&activations) def set_annotations(self, docs, states): cdef StateClass state cdef Doc doc for i, (state, doc) in enumerate(zip(states, docs)): self.moves.finalize_state(state.c) for j in range(doc.length): doc.c[j] = state.c._sent[j] self.moves.finalize_doc(doc) for hook in self.postprocesses: hook(doc) def transition_states(self, states, float[:, ::1] scores): cdef StateClass state cdef float* c_scores = &scores[0, 0] cdef vector[StateC*] c_states for state in states: c_states.push_back(state.c) self.c_transition_batch(&c_states[0], c_scores, scores.shape[1], scores.shape[0]) return [state for state in states if not state.c.is_final()] cdef void c_transition_batch(self, StateC** states, const float* scores, int nr_class, int batch_size) nogil: # n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc with gil: assert self.moves.n_moves > 0 is_valid = calloc(self.moves.n_moves, sizeof(int)) cdef int i, guess cdef Transition action for i in range(batch_size): self.moves.set_valid(is_valid, states[i]) guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class) if guess == -1: # This shouldn't happen, but it's hard to raise an error here, # and we don't want to infinite loop. So, force to end state. states[i].force_final() else: action = self.moves.c[guess] action.do(states[i], action.label) states[i].push_hist(guess) free(is_valid) def update(self, examples, *, drop=0., set_annotations=False, sgd=None, losses=None): cdef StateClass state if losses is None: losses = {} losses.setdefault(self.name, 0.) for multitask in self._multitasks: multitask.update(examples, drop=drop, sgd=sgd) n_examples = len([eg for eg in examples if self.moves.has_gold(eg)]) if n_examples == 0: return losses set_dropout_rate(self.model, drop) # Prepare the stepwise model, and get the callback for finishing the batch model, backprop_tok2vec = self.model.begin_update( [eg.predicted for eg in examples]) if self.cfg["update_with_oracle_cut_size"] >= 1: # Chop sequences into lengths of this many transitions, to make the # batch uniform length. # We used to randomize this, but it's not clear that actually helps? cut_size = self.cfg["update_with_oracle_cut_size"] states, golds, max_steps = self._init_gold_batch( examples, max_length=cut_size ) else: states, golds, _ = self.moves.init_gold_batch(examples) max_steps = max([len(eg.x) for eg in examples]) if not states: return losses all_states = list(states) states_golds = list(zip(states, golds)) while states_golds: states, golds = zip(*states_golds) scores, backprop = model.begin_update(states) d_scores = self.get_batch_loss(states, golds, scores, losses) # Note that the gradient isn't normalized by the batch size # here, because our "samples" are really the states...But we # can't normalize by the number of states either, as then we'd # be getting smaller gradients for states in long sequences. backprop(d_scores) # Follow the predicted action self.transition_states(states, scores) states_golds = [(s, g) for (s, g) in zip(states, golds) if not s.is_final()] backprop_tok2vec(golds) if sgd not in (None, False): self.model.finish_update(sgd) if set_annotations: docs = [eg.predicted for eg in examples] self.set_annotations(docs, all_states) # Ugh, this is annoying. If we're working on GPU, we want to free the # memory ASAP. It seems that Python doesn't necessarily get around to # removing these in time if we don't explicitly delete? It's confusing. del backprop del backprop_tok2vec model.clear_memory() del model return losses def rehearse(self, examples, sgd=None, losses=None, **cfg): """Perform a "rehearsal" update, to prevent catastrophic forgetting.""" if losses is None: losses = {} for multitask in self._multitasks: if hasattr(multitask, 'rehearse'): multitask.rehearse(examples, losses=losses, sgd=sgd) if self._rehearsal_model is None: return None losses.setdefault(self.name, 0.) docs = [eg.predicted for eg in examples] states = self.moves.init_batch(docs) # This is pretty dirty, but the NER can resize itself in init_batch, # if labels are missing. We therefore have to check whether we need to # expand our model output. self._resize() # Prepare the stepwise model, and get the callback for finishing the batch set_dropout_rate(self._rehearsal_model, 0.0) set_dropout_rate(self.model, 0.0) tutor, _ = self._rehearsal_model.begin_update(docs) model, backprop_tok2vec = self.model.begin_update(docs) n_scores = 0. loss = 0. while states: targets, _ = tutor.begin_update(states) guesses, backprop = model.begin_update(states) d_scores = (guesses - targets) / targets.shape[0] # If all weights for an output are 0 in the original model, don't # supervise that output. This allows us to add classes. loss += (d_scores**2).sum() backprop(d_scores, sgd=sgd) # Follow the predicted action self.transition_states(states, guesses) states = [state for state in states if not state.is_final()] n_scores += d_scores.size # Do the backprop backprop_tok2vec(docs) if sgd is not None: self.model.finish_update(sgd) losses[self.name] += loss / n_scores del backprop del backprop_tok2vec model.clear_memory() tutor.clear_memory() del model del tutor return losses def get_batch_loss(self, states, golds, float[:, ::1] scores, losses): cdef StateClass state cdef Pool mem = Pool() cdef int i # n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc assert self.moves.n_moves > 0 is_valid = mem.alloc(self.moves.n_moves, sizeof(int)) costs = mem.alloc(self.moves.n_moves, sizeof(float)) cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves), dtype='f', order='C') c_d_scores = d_scores.data unseen_classes = self.model.attrs["unseen_classes"] for i, (state, gold) in enumerate(zip(states, golds)): memset(is_valid, 0, self.moves.n_moves * sizeof(int)) memset(costs, 0, self.moves.n_moves * sizeof(float)) self.moves.set_costs(is_valid, costs, state, gold) for j in range(self.moves.n_moves): if costs[j] <= 0.0 and j in unseen_classes: unseen_classes.remove(j) cpu_log_loss(c_d_scores, costs, is_valid, &scores[i, 0], d_scores.shape[1]) c_d_scores += d_scores.shape[1] # Note that we don't normalize this. See comment in update() for why. if losses is not None: losses.setdefault(self.name, 0.) losses[self.name] += (d_scores**2).sum() return d_scores def create_optimizer(self): return create_default_optimizer() def set_output(self, nO): self.model.attrs["resize_output"](self.model, nO) def begin_training(self, get_examples, pipeline=None, sgd=None, **kwargs): self.cfg.update(kwargs) lexeme_norms = self.vocab.lookups.get_table("lexeme_norm", {}) if len(lexeme_norms) == 0 and self.vocab.lang in util.LEXEME_NORM_LANGS: langs = ", ".join(util.LEXEME_NORM_LANGS) warnings.warn(Warnings.W033.format(model="parser or NER", langs=langs)) if not hasattr(get_examples, '__call__'): gold_tuples = get_examples get_examples = lambda: gold_tuples actions = self.moves.get_actions( examples=get_examples(), min_freq=self.cfg['min_action_freq'], learn_tokens=self.cfg["learn_tokens"] ) for action, labels in self.moves.labels.items(): actions.setdefault(action, {}) for label, freq in labels.items(): if label not in actions[action]: actions[action][label] = freq self.moves.initialize_actions(actions) # make sure we resize so we have an appropriate upper layer self._resize() if sgd is None: sgd = self.create_optimizer() doc_sample = [] for example in islice(get_examples(), 10): doc_sample.append(example.predicted) if pipeline is not None: for name, component in pipeline: if component is self: break if hasattr(component, "pipe"): doc_sample = list(component.pipe(doc_sample, batch_size=8)) else: doc_sample = [component(doc) for doc in doc_sample] if doc_sample: self.model.initialize(doc_sample) else: self.model.initialize() if pipeline is not None: self.init_multitask_objectives(get_examples, pipeline, sgd=sgd, **self.cfg) return sgd def to_disk(self, path, exclude=tuple()): serializers = { 'model': lambda p: (self.model.to_disk(p) if self.model is not True else True), 'vocab': lambda p: self.vocab.to_disk(p), 'moves': lambda p: self.moves.to_disk(p, exclude=["strings"]), 'cfg': lambda p: srsly.write_json(p, self.cfg) } util.to_disk(path, serializers, exclude) def from_disk(self, path, exclude=tuple()): deserializers = { 'vocab': lambda p: self.vocab.from_disk(p), 'moves': lambda p: self.moves.from_disk(p, exclude=["strings"]), 'cfg': lambda p: self.cfg.update(srsly.read_json(p)), 'model': lambda p: None, } util.from_disk(path, deserializers, exclude) if 'model' not in exclude: path = util.ensure_path(path) with (path / 'model').open('rb') as file_: bytes_data = file_.read() try: self._resize() self.model.from_bytes(bytes_data) except AttributeError: raise ValueError(Errors.E149) return self def to_bytes(self, exclude=tuple()): serializers = { "model": lambda: (self.model.to_bytes()), "vocab": lambda: self.vocab.to_bytes(), "moves": lambda: self.moves.to_bytes(exclude=["strings"]), "cfg": lambda: srsly.json_dumps(self.cfg, indent=2, sort_keys=True) } return util.to_bytes(serializers, exclude) def from_bytes(self, bytes_data, exclude=tuple()): deserializers = { "vocab": lambda b: self.vocab.from_bytes(b), "moves": lambda b: self.moves.from_bytes(b, exclude=["strings"]), "cfg": lambda b: self.cfg.update(srsly.json_loads(b)), "model": lambda b: None, } msg = util.from_bytes(bytes_data, deserializers, exclude) if 'model' not in exclude: if 'model' in msg: try: self.model.from_bytes(msg['model']) except AttributeError: raise ValueError(Errors.E149) return self def _init_gold_batch(self, examples, min_length=5, max_length=500): """Make a square batch, of length equal to the shortest transition sequence or a cap. A long doc will get multiple states. Let's say we have a doc of length 2*N, where N is the shortest doc. We'll make two states, one representing long_doc[:N], and another representing long_doc[N:].""" cdef: StateClass start_state StateClass state Transition action all_states = self.moves.init_batch([eg.predicted for eg in examples]) states = [] golds = [] kept = [] max_length_seen = 0 for state, eg in zip(all_states, examples): if self.moves.has_gold(eg) and not state.is_final(): gold = self.moves.init_gold(state, eg) if len(eg.x) < max_length: states.append(state) golds.append(gold) else: oracle_actions = self.moves.get_oracle_sequence_from_state( state.copy(), gold) kept.append((eg, state, gold, oracle_actions)) min_length = min(min_length, len(oracle_actions)) max_length_seen = max(max_length, len(oracle_actions)) if not kept: return states, golds, 0 max_length = max(min_length, min(max_length, max_length_seen)) cdef int clas max_moves = 0 for eg, state, gold, oracle_actions in kept: for i in range(0, len(oracle_actions), max_length): start_state = state.copy() n_moves = 0 for clas in oracle_actions[i:i+max_length]: action = self.moves.c[clas] action.do(state.c, action.label) state.c.push_hist(action.clas) n_moves += 1 if state.is_final(): break max_moves = max(max_moves, n_moves) if self.moves.has_gold(eg, start_state.B(0), state.B(0)): states.append(start_state) golds.append(gold) max_moves = max(max_moves, n_moves) if state.is_final(): break return states, golds, max_moves