# cython: infer_types=True
# coding: utf8
from __future__ import unicode_literals

from libc.string cimport memcpy
from cpython.mem cimport PyMem_Malloc, PyMem_Free
# Compiler crashes on memory view coercion without this. Should report bug.
from cython.view cimport array as cvarray
cimport numpy as np
np.import_array()
import numpy

from ..typedefs cimport hash_t
from ..lexeme cimport Lexeme
from .. import parts_of_speech
from ..attrs cimport IS_ALPHA, IS_ASCII, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_SPACE
from ..attrs cimport IS_BRACKET, IS_QUOTE, IS_LEFT_PUNCT, IS_RIGHT_PUNCT
from ..attrs cimport IS_OOV, IS_TITLE, IS_UPPER, LIKE_URL, LIKE_NUM, LIKE_EMAIL
from ..attrs cimport IS_STOP, ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX
from ..attrs cimport LENGTH, CLUSTER, LEMMA, POS, TAG, DEP
from ..compat import is_config
from .. import util
from .. import about
from .underscore import Underscore


cdef class Token:
    """An individual token – i.e. a word, punctuation symbol, whitespace,
    etc."""
    @classmethod
    def set_extension(cls, name, default=None, method=None,
                      getter=None, setter=None):
        Underscore.token_extensions[name] = (default, method, getter, setter)

    @classmethod
    def get_extension(cls, name):
        return Underscore.span_extensions.get(name)

    @classmethod
    def has_extension(cls, name):
        return name in Underscore.span_extensions

    def __cinit__(self, Vocab vocab, Doc doc, int offset):
        """Construct a `Token` object.

        vocab (Vocab): A storage container for lexical types.
        doc (Doc): The parent document.
        offset (int): The index of the token within the document.
        """
        self.vocab = vocab
        self.doc = doc
        self.c = &self.doc.c[offset]
        self.i = offset

    def __hash__(self):
        return hash((self.doc, self.i))

    def __len__(self):
        """The number of unicode characters in the token, i.e. `token.text`.

        RETURNS (int): The number of unicode characters in the token.
        """
        return self.c.lex.length

    def __unicode__(self):
        return self.text

    def __bytes__(self):
        return self.text.encode('utf8')

    def __str__(self):
        if is_config(python3=True):
            return self.__unicode__()
        return self.__bytes__()

    def __repr__(self):
        return self.__str__()

    def __richcmp__(self, Token other, int op):
        # http://cython.readthedocs.io/en/latest/src/userguide/special_methods.html
        cdef Doc my_doc = self.doc
        cdef Doc other_doc = other.doc
        my = self.idx
        their = other.idx if other is not None else None
        if op == 0:
            return my < their
        elif op == 2:
            if my_doc is other_doc:
                return my == their
            else:
                return False
        elif op == 4:
            return my > their
        elif op == 1:
            return my <= their
        elif op == 3:
            if my_doc is other_doc:
                return my != their
            else:
                return True
        elif op == 5:
            return my >= their
        else:
            raise ValueError(op)

    @property
    def _(self):
        return Underscore(Underscore.token_extensions, self,
                          start=self.idx, end=None)

    cpdef bint check_flag(self, attr_id_t flag_id) except -1:
        """Check the value of a boolean flag.

        flag_id (int): The ID of the flag attribute.
        RETURNS (bool): Whether the flag is set.

        EXAMPLE:
            >>> from spacy.attrs import IS_TITLE
            >>> doc = nlp(u'Give it back! He pleaded.')
            >>> token = doc[0]
            >>> token.check_flag(IS_TITLE)
            True
        """
        return Lexeme.c_check_flag(self.c.lex, flag_id)

    def nbor(self, int i=1):
        """Get a neighboring token.

        i (int): The relative position of the token to get. Defaults to 1.
        RETURNS (Token): The token at position `self.doc[self.i+i]`.
        """
        if self.i+i < 0 or (self.i+i >= len(self.doc)):
            msg = "Error accessing doc[%d].nbor(%d), for doc of length %d"
            raise IndexError(msg % (self.i, i, len(self.doc)))
        return self.doc[self.i+i]

    def similarity(self, other):
        """Make a semantic similarity estimate. The default estimate is cosine
        similarity using an average of word vectors.

        other (object): The object to compare with. By default, accepts `Doc`,
            `Span`, `Token` and `Lexeme` objects.
        RETURNS (float): A scalar similarity score. Higher is more similar.
        """
        if 'similarity' in self.doc.user_token_hooks:
            return self.doc.user_token_hooks['similarity'](self)
        if self.vector_norm == 0 or other.vector_norm == 0:
            return 0.0
        return (numpy.dot(self.vector, other.vector) /
                (self.vector_norm * other.vector_norm))

    property lex_id:
        """RETURNS (int): Sequential ID of the token's lexical type."""
        def __get__(self):
            return self.c.lex.id

    property rank:
        """RETURNS (int): Sequential ID of the token's lexical type, used to
        index into tables, e.g. for word vectors."""
        def __get__(self):
            return self.c.lex.id

    property string:
        """Deprecated: Use Token.text_with_ws instead."""
        def __get__(self):
            return self.text_with_ws

    property text:
        """RETURNS (unicode): The original verbatim text of the token."""
        def __get__(self):
            return self.orth_

    property text_with_ws:
        """RETURNS (unicode): The text content of the span (with trailing
            whitespace).
        """
        def __get__(self):
            cdef unicode orth = self.vocab.strings[self.c.lex.orth]
            if self.c.spacy:
                return orth + u' '
            else:
                return orth

    property prob:
        """RETURNS (float): Smoothed log probability estimate of token type."""
        def __get__(self):
            return self.c.lex.prob

    property sentiment:
        """RETURNS (float): A scalar value indicating the positivity or
            negativity of the token."""
        def __get__(self):
            if 'sentiment' in self.doc.user_token_hooks:
                return self.doc.user_token_hooks['sentiment'](self)
            return self.c.lex.sentiment

    property lang:
        """RETURNS (uint64): ID of the language of the parent document's
            vocabulary.
        """
        def __get__(self):
            return self.c.lex.lang

    property idx:
        """RETURNS (int): The character offset of the token within the parent
            document.
        """
        def __get__(self):
            return self.c.idx

    property cluster:
        """RETURNS (int): Brown cluster ID."""
        def __get__(self):
            return self.c.lex.cluster

    property orth:
        """RETURNS (uint64): ID of the verbatim text content."""
        def __get__(self):
            return self.c.lex.orth

    property lower:
        """RETURNS (uint64): ID of the lowercase token text."""
        def __get__(self):
            return self.c.lex.lower

    property norm:
        """RETURNS (uint64): ID of the token's norm, i.e. a normalised form of
            the token text. Usually set in the language's tokenizer exceptions
            or norm exceptions.
        """
        def __get__(self):
            return self.c.lex.norm

    property shape:
        """RETURNS (uint64): ID of the token's shape, a transform of the
            tokens's string, to show orthographic features (e.g. "Xxxx", "dd").
        """
        def __get__(self):
            return self.c.lex.shape

    property prefix:
        """RETURNS (uint64): ID of a length-N substring from the start of the
            token. Defaults to `N=1`.
        """
        def __get__(self):
            return self.c.lex.prefix

    property suffix:
        """RETURNS (uint64): ID of a length-N substring from the end of the
            token. Defaults to `N=3`.
        """
        def __get__(self):
            return self.c.lex.suffix

    property lemma:
        """RETURNS (uint64): ID of the base form of the word, with no
            inflectional suffixes.
        """
        def __get__(self):
            return self.c.lemma

        def __set__(self, attr_t lemma):
            self.c.lemma = lemma

    property pos:
        """RETURNS (uint64): ID of coarse-grained part-of-speech tag."""
        def __get__(self):
            return self.c.pos

    property tag:
        """RETURNS (uint64): ID of fine-grained part-of-speech tag."""
        def __get__(self):
            return self.c.tag

        def __set__(self, attr_t tag):
            self.vocab.morphology.assign_tag(self.c, tag)

    property dep:
        """RETURNS (uint64): ID of syntactic dependency label."""
        def __get__(self):
            return self.c.dep

        def __set__(self, attr_t label):
            self.c.dep = label

    property has_vector:
        """A boolean value indicating whether a word vector is associated with
        the object.

        RETURNS (bool): Whether a word vector is associated with the object.
        """
        def __get__(self):
            if 'has_vector' in self.doc.user_token_hooks:
                return self.doc.user_token_hooks['has_vector'](self)
            if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
                return True
            return self.vocab.has_vector(self.c.lex.orth)

    property vector:
        """A real-valued meaning representation.

        RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
            representing the token's semantics.
        """
        def __get__(self):
            if 'vector' in self.doc.user_token_hooks:
                return self.doc.user_token_hooks['vector'](self)
            if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
                return self.doc.tensor[self.i]
            else:
                return self.vocab.get_vector(self.c.lex.orth)

    property vector_norm:
        """The L2 norm of the token's vector representation.

        RETURNS (float): The L2 norm of the vector representation.
        """
        def __get__(self):
            if 'vector_norm' in self.doc.user_token_hooks:
                return self.doc.user_token_hooks['vector_norm'](self)
            vector = self.vector
            return numpy.sqrt((vector ** 2).sum())

    property n_lefts:
        """RETURNS (int): The number of leftward immediate children of the
            word, in the syntactic dependency parse.
        """
        def __get__(self):
            return self.c.l_kids

    property n_rights:
        """RETURNS (int): The number of rightward immediate children of the
            word, in the syntactic dependency parse.
        """
        def __get__(self):
            return self.c.r_kids

    property sent_start:
        def __get__(self):
            util.deprecated(
                "Token.sent_start is now deprecated. Use Token.is_sent_start "
                "instead, which returns a boolean value or None if the answer "
                "is unknown – instead of a misleading 0 for False and 1 for "
                "True. It also fixes a quirk in the old logic that would "
                "always set the property to 0 for the first word of the "
                "document.")
            # Handle broken backwards compatibility case: doc[0].sent_start
            # was False.
            if self.i == 0:
                return False
            else:
                return self.sent_start

        def __set__(self, value):
            self.is_sent_start = value

    property is_sent_start:
        """RETURNS (bool / None): Whether the token starts a sentence.
            None if unknown.
        """
        def __get__(self):
            if self.c.sent_start == 0:
                return None
            elif self.c.sent_start < 0:
                return False
            else:
                return True

        def __set__(self, value):
            if self.doc.is_parsed:
                raise ValueError(
                    "Refusing to write to token.sent_start if its document "
                    "is parsed, because this may cause inconsistent state.")
            if value is None:
                self.c.sent_start = 0
            elif value is True:
                self.c.sent_start = 1
            elif value is False:
                self.c.sent_start = -1
            else:
                raise ValueError("Invalid value for token.sent_start. Must be "
                                 "one of: None, True, False")

    property lefts:
        """The leftward immediate children of the word, in the syntactic
        dependency parse.

        YIELDS (Token): A left-child of the token.
        """
        def __get__(self):
            cdef int nr_iter = 0
            cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
            while ptr < self.c:
                if ptr + ptr.head == self.c:
                    yield self.doc[ptr - (self.c - self.i)]
                ptr += 1
                nr_iter += 1
                # This is ugly, but it's a way to guard out infinite loops
                if nr_iter >= 10000000:
                    raise RuntimeError("Possibly infinite loop encountered "
                                       "while looking for token.lefts")

    property rights:
        """The rightward immediate children of the word, in the syntactic
        dependency parse.

        YIELDS (Token): A right-child of the token.
        """
        def __get__(self):
            cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
            tokens = []
            cdef int nr_iter = 0
            while ptr > self.c:
                if ptr + ptr.head == self.c:
                    tokens.append(self.doc[ptr - (self.c - self.i)])
                ptr -= 1
                nr_iter += 1
                if nr_iter >= 10000000:
                    raise RuntimeError("Possibly infinite loop encountered "
                                       "while looking for token.rights")
            tokens.reverse()
            for t in tokens:
                yield t

    property children:
        """A sequence of the token's immediate syntactic children.

        YIELDS (Token): A child token such that child.head==self
        """
        def __get__(self):
            yield from self.lefts
            yield from self.rights

    property subtree:
        """A sequence of all the token's syntactic descendents.

        YIELDS (Token): A descendent token such that
            `self.is_ancestor(descendent)`.
        """
        def __get__(self):
            for word in self.lefts:
                yield from word.subtree
            yield self
            for word in self.rights:
                yield from word.subtree

    property left_edge:
        """The leftmost token of this token's syntactic descendents.

        RETURNS (Token): The first token such that `self.is_ancestor(token)`.
        """
        def __get__(self):
            return self.doc[self.c.l_edge]

    property right_edge:
        """The rightmost token of this token's syntactic descendents.

        RETURNS (Token): The last token such that `self.is_ancestor(token)`.
        """
        def __get__(self):
            return self.doc[self.c.r_edge]

    property ancestors:
        """A sequence of this token's syntactic ancestors.

        YIELDS (Token): A sequence of ancestor tokens such that
            `ancestor.is_ancestor(self)`.
        """
        def __get__(self):
            cdef const TokenC* head_ptr = self.c
            # guard against infinite loop, no token can have
            # more ancestors than tokens in the tree
            cdef int i = 0
            while head_ptr.head != 0 and i < self.doc.length:
                head_ptr += head_ptr.head
                yield self.doc[head_ptr - (self.c - self.i)]
                i += 1

    def is_ancestor(self, descendant):
        """Check whether this token is a parent, grandparent, etc. of another
        in the dependency tree.

        descendant (Token): Another token.
        RETURNS (bool): Whether this token is the ancestor of the descendant.
        """
        if self.doc is not descendant.doc:
            return False
        return any(ancestor.i == self.i for ancestor in descendant.ancestors)

    property head:
        """The syntactic parent, or "governor", of this token.

        RETURNS (Token): The token predicted by the parser to be the head of
            the current token.
        """
        def __get__(self):
            return self.doc[self.i + self.c.head]

        def __set__(self, Token new_head):
            # this function sets the head of self to new_head
            # and updates the counters for left/right dependents
            # and left/right corner for the new and the old head

            # do nothing if old head is new head
            if self.i + self.c.head == new_head.i:
                return

            cdef Token old_head = self.head
            cdef int rel_newhead_i = new_head.i - self.i

            # is the new head a descendant of the old head
            cdef bint is_desc = old_head.is_ancestor(new_head)

            cdef int new_edge
            cdef Token anc, child

            # update number of deps of old head
            if self.c.head > 0:  # left dependent
                old_head.c.l_kids -= 1
                if self.c.l_edge == old_head.c.l_edge:
                    # the token dominates the left edge so the left edge of
                    # the  head may change when the token is reattached, it may
                    # not change if the new head is a descendant of the current
                    # head

                    new_edge = self.c.l_edge
                    # the new l_edge is the left-most l_edge on any of the
                    # other dependents where the l_edge is left of the head,
                    # otherwise it is the head
                    if not is_desc:
                        new_edge = old_head.i
                        for child in old_head.children:
                            if child == self:
                                continue
                            if child.c.l_edge < new_edge:
                                new_edge = child.c.l_edge
                        old_head.c.l_edge = new_edge

                    # walk up the tree from old_head and assign new l_edge to
                    # ancestors until an ancestor already has an l_edge that's
                    # further left
                    for anc in old_head.ancestors:
                        if anc.c.l_edge <= new_edge:
                            break
                        anc.c.l_edge = new_edge

            elif self.c.head < 0:  # right dependent
                old_head.c.r_kids -= 1
                # do the same thing as for l_edge
                if self.c.r_edge == old_head.c.r_edge:
                    new_edge = self.c.r_edge

                    if not is_desc:
                        new_edge = old_head.i
                        for child in old_head.children:
                            if child == self:
                                continue
                            if child.c.r_edge > new_edge:
                                new_edge = child.c.r_edge
                        old_head.c.r_edge = new_edge

                    for anc in old_head.ancestors:
                        if anc.c.r_edge >= new_edge:
                            break
                        anc.c.r_edge = new_edge

            # update number of deps of new head
            if rel_newhead_i > 0:  # left dependent
                new_head.c.l_kids += 1
                # walk up the tree from new head and set l_edge to self.l_edge
                # until you hit a token with an l_edge further to the left
                if self.c.l_edge < new_head.c.l_edge:
                    new_head.c.l_edge = self.c.l_edge
                    for anc in new_head.ancestors:
                        if anc.c.l_edge <= self.c.l_edge:
                            break
                        anc.c.l_edge = self.c.l_edge

            elif rel_newhead_i < 0:  # right dependent
                new_head.c.r_kids += 1
                # do the same as for l_edge
                if self.c.r_edge > new_head.c.r_edge:
                    new_head.c.r_edge = self.c.r_edge
                    for anc in new_head.ancestors:
                        if anc.c.r_edge >= self.c.r_edge:
                            break
                        anc.c.r_edge = self.c.r_edge

            # set new head
            self.c.head = rel_newhead_i

    property conjuncts:
        """A sequence of coordinated tokens, including the token itself.

        YIELDS (Token): A coordinated token.
        """
        def __get__(self):
            """Get a list of conjoined words."""
            cdef Token word
            if 'conjuncts' in self.doc.user_token_hooks:
                yield from self.doc.user_token_hooks['conjuncts'](self)
            else:
                if self.dep_ != 'conj':
                    for word in self.rights:
                        if word.dep_ == 'conj':
                            yield word
                            yield from word.conjuncts

    property ent_type:
        """RETURNS (uint64): Named entity type."""
        def __get__(self):
            return self.c.ent_type

        def __set__(self, ent_type):
            self.c.ent_type = ent_type

    property ent_iob:
        """IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag
        is assigned.

        RETURNS (uint64): IOB code of named entity tag.
        """
        def __get__(self):
            return self.c.ent_iob

    property ent_type_:
        """RETURNS (unicode): Named entity type."""
        def __get__(self):
            return self.vocab.strings[self.c.ent_type]

        def __set__(self, ent_type):
            self.c.ent_type = self.vocab.strings.add(ent_type)

    property ent_iob_:
        """IOB code of named entity tag. "B" means the token begins an entity,
        "I" means it is inside an entity, "O" means it is outside an entity,
        and "" means no entity tag is set.

        RETURNS (unicode): IOB code of named entity tag.
        """
        def __get__(self):
            iob_strings = ('', 'I', 'O', 'B')
            return iob_strings[self.c.ent_iob]

    property ent_id:
        """RETURNS (uint64): ID of the entity the token is an instance of,
            if any.
        """
        def __get__(self):
            return self.c.ent_id

        def __set__(self, hash_t key):
            self.c.ent_id = key

    property ent_id_:
        """RETURNS (unicode): ID of the entity the token is an instance of,
            if any.
        """
        def __get__(self):
            return self.vocab.strings[self.c.ent_id]

        def __set__(self, name):
            self.c.ent_id = self.vocab.strings.add(name)

    property whitespace_:
        """RETURNS (unicode): The trailing whitespace character, if present.
        """
        def __get__(self):
            return ' ' if self.c.spacy else ''

    property orth_:
        """RETURNS (unicode): Verbatim text content (identical to
            `Token.text`). Existst mostly for consistency with the other
            attributes.
        """
        def __get__(self):
            return self.vocab.strings[self.c.lex.orth]

    property lower_:
        """RETURNS (unicode): The lowercase token text. Equivalent to
            `Token.text.lower()`.
        """
        def __get__(self):
            return self.vocab.strings[self.c.lex.lower]

    property norm_:
        """RETURNS (unicode): The token's norm, i.e. a normalised form of the
            token text. Usually set in the language's tokenizer exceptions or
            norm exceptions.
        """
        def __get__(self):
            return self.vocab.strings[self.c.lex.norm]

    property shape_:
        """RETURNS (unicode): Transform of the tokens's string, to show
            orthographic features. For example, "Xxxx" or "dd".
        """
        def __get__(self):
            return self.vocab.strings[self.c.lex.shape]

    property prefix_:
        """RETURNS (unicode): A length-N substring from the start of the token.
            Defaults to `N=1`.
        """
        def __get__(self):
            return self.vocab.strings[self.c.lex.prefix]

    property suffix_:
        """RETURNS (unicode): A length-N substring from the end of the token.
            Defaults to `N=3`.
        """
        def __get__(self):
            return self.vocab.strings[self.c.lex.suffix]

    property lang_:
        """RETURNS (unicode): Language of the parent document's vocabulary,
            e.g. 'en'.
        """
        def __get__(self):
            return self.vocab.strings[self.c.lex.lang]

    property lemma_:
        """RETURNS (unicode): The token lemma, i.e. the base form of the word,
            with no inflectional suffixes.
        """
        def __get__(self):
            return self.vocab.strings[self.c.lemma]

        def __set__(self, unicode lemma_):
            self.c.lemma = self.vocab.strings.add(lemma_)

    property pos_:
        """RETURNS (unicode): Coarse-grained part-of-speech tag."""
        def __get__(self):
            return parts_of_speech.NAMES[self.c.pos]

    property tag_:
        """RETURNS (unicode): Fine-grained part-of-speech tag."""
        def __get__(self):
            return self.vocab.strings[self.c.tag]

        def __set__(self, tag):
            self.tag = self.vocab.strings.add(tag)

    property dep_:
        """RETURNS (unicode): The syntactic dependency label."""
        def __get__(self):
            return self.vocab.strings[self.c.dep]

        def __set__(self, unicode label):
            self.c.dep = self.vocab.strings.add(label)

    property is_oov:
        """RETURNS (bool): Whether the token is out-of-vocabulary."""
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_OOV)

    property is_stop:
        """RETURNS (bool): Whether the token is a stop word, i.e. part of a
            "stop list" defined by the language data.
        """
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_STOP)

    property is_alpha:
        """RETURNS (bool): Whether the token consists of alpha characters.
            Equivalent to `token.text.isalpha()`.
        """
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_ALPHA)

    property is_ascii:
        """RETURNS (bool): Whether the token consists of ASCII characters.
            Equivalent to `[any(ord(c) >= 128 for c in token.text)]`.
        """
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_ASCII)

    property is_digit:
        """RETURNS (bool): Whether the token consists of digits. Equivalent to
            `token.text.isdigit()`.
        """
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_DIGIT)

    property is_lower:
        """RETURNS (bool): Whether the token is in lowercase. Equivalent to
            `token.text.islower()`.
        """
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_LOWER)

    property is_upper:
        """RETURNS (bool): Whether the token is in uppercase. Equivalent to
            `token.text.isupper()`
        """
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_UPPER)

    property is_title:
        """RETURNS (bool): Whether the token is in titlecase. Equivalent to
            `token.text.istitle()`.
        """
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_TITLE)

    property is_punct:
        """RETURNS (bool): Whether the token is punctuation."""
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_PUNCT)

    property is_space:
        """RETURNS (bool): Whether the token consists of whitespace characters.
            Equivalent to `token.text.isspace()`.
        """
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_SPACE)

    property is_bracket:
        """RETURNS (bool): Whether the token is a bracket."""
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_BRACKET)

    property is_quote:
        """RETURNS (bool): Whether the token is a quotation mark."""
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_QUOTE)

    property is_left_punct:
        """RETURNS (bool): Whether the token is a left punctuation mark."""
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT)

    property is_right_punct:
        """RETURNS (bool): Whether the token is a left punctuation mark."""
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT)

    property like_url:
        """RETURNS (bool): Whether the token resembles a URL."""
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, LIKE_URL)

    property like_num:
        """RETURNS (bool): Whether the token resembles a number, e.g. "10.9",
            "10", "ten", etc.
        """
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, LIKE_NUM)

    property like_email:
        """RETURNS (bool): Whether the token resembles an email address."""
        def __get__(self):
            return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)