--- title: Model Architectures teaser: Pre-defined model architectures included with the core library source: spacy/ml/models menu: - ['Tok2Vec', 'tok2vec'] - ['Transformers', 'transformers'] - ['Parser & NER', 'parser'] - ['Tagging', 'tagger'] - ['Text Classification', 'textcat'] - ['Entity Linking', 'entitylinker'] --- TODO: intro and how architectures work, link to [`registry`](/api/top-level#registry), [custom models](/usage/training#custom-models) usage etc. ## Tok2Vec architectures {#tok2vec source="spacy/ml/models/tok2vec.py"} ### spacy.HashEmbedCNN.v1 {#HashEmbedCNN} <!-- TODO: intro --> > #### Example Config > > ```ini > [model] > @architectures = "spacy.HashEmbedCNN.v1" > # TODO: ... > > [model.tok2vec] > # ... > ``` | Name | Type | Description | | -------------------- | ----- | ----------- | | `width` | int | | | `depth` | int | | | `embed_size` | int | | | `window_size` | int | | | `maxout_pieces` | int | | | `subword_features` | bool | | | `dropout` | float | | | `pretrained_vectors` | bool | | ### spacy.HashCharEmbedCNN.v1 {#HashCharEmbedCNN} ### spacy.HashCharEmbedBiLSTM.v1 {#HashCharEmbedBiLSTM} ## Transformer architectures {#transformers source="github.com/explosion/spacy-transformers/blob/master/spacy_transformers/architectures.py"} The following architectures are provided by the package [`spacy-transformers`](https://github.com/explosion/spacy-transformers). See the [usage documentation](/usage/transformers) for how to integrate the architectures into your training config. ### spacy-transformers.TransformerModel.v1 {#TransformerModel} <!-- TODO: description --> > #### Example Config > > ```ini > [model] > @architectures = "spacy-transformers.TransformerModel.v1" > name = "roberta-base" > tokenizer_config = {"use_fast": true} > > [model.get_spans] > @span_getters = "strided_spans.v1" > window = 128 > stride = 96 > ``` | Name | Type | Description | | ------------------ | ---------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `name` | str | Any model name that can be loaded by [`transformers.AutoModel`](https://huggingface.co/transformers/model_doc/auto.html#transformers.AutoModel). | | `get_spans` | `Callable` | Function that takes a batch of [`Doc`](/api/doc) object and returns lists of [`Span`](/api) objects to process by the transformer. [See here](/api/transformer#span_getters) for built-in options and examples. | | `tokenizer_config` | `Dict[str, Any]` | Tokenizer settings passed to [`transformers.AutoTokenizer`](https://huggingface.co/transformers/model_doc/auto.html#transformers.AutoTokenizer). | ### spacy-transformers.Tok2VecListener.v1 {#Tok2VecListener} <!-- TODO: description --> > #### Example Config > > ```ini > [model] > @architectures = "spacy-transformers.Tok2VecListener.v1" > grad_factor = 1.0 > > [model.pooling] > @layers = "reduce_mean.v1" > ``` | Name | Type | Description | | ------------- | ------------------------- | ---------------------------------------------------------------------------------------------- | | `grad_factor` | float | Factor for weighting the gradient if multiple components listen to the same transformer model. | | `pooling` | `Model[Ragged, Floats2d]` | Pooling layer to determine how the vector for each spaCy token will be computed. | ## Parser & NER architectures {#parser source="spacy/ml/models/parser.py"} ### spacy.TransitionBasedParser.v1 {#TransitionBasedParser} > #### Example Config > > ```ini > [model] > @architectures = "spacy.TransitionBasedParser.v1" > nr_feature_tokens = 6 > hidden_width = 64 > maxout_pieces = 2 > > [model.tok2vec] > # ... > ``` | Name | Type | Description | | ------------------- | ------------------------------------------ | ----------- | | `tok2vec` | [`Model`](https://thinc.ai/docs/api-model) | | | `nr_feature_tokens` | int | | | `hidden_width` | int | | | `maxout_pieces` | int | | | `use_upper` | bool | | | `nO` | int | | ## Tagging architectures {#tagger source="spacy/ml/models/tagger.py"} ### spacy.Tagger.v1 {#Tagger} <!-- TODO: intro --> > #### Example Config > > ```ini > [model] > @architectures = "spacy.Tagger.v1" > nO = null > > [model.tok2vec] > # ... > ``` | Name | Type | Description | | --------- | ------------------------------------------ | ----------- | | `tok2vec` | [`Model`](https://thinc.ai/docs/api-model) | | | `nO` | int | | ## Text classification architectures {#textcat source="spacy/ml/models/textcat.py"} ### spacy.TextCatEnsemble.v1 {#TextCatEnsemble} ### spacy.TextCatBOW.v1 {#TextCatBOW} ### spacy.TextCatCNN.v1 {#TextCatCNN} ### spacy.TextCatLowData.v1 {#TextCatLowData} ## Entity linking architectures {#entitylinker source="spacy/ml/models/entity_linker.py"} ### spacy.EntityLinker.v1 {#EntityLinker} <!-- TODO: intro --> > #### Example Config > > ```ini > [model] > @architectures = "spacy.EntityLinker.v1" > nO = null > > [model.tok2vec] > # ... > ``` | Name | Type | Description | | --------- | ------------------------------------------ | ----------- | | `tok2vec` | [`Model`](https://thinc.ai/docs/api-model) | | | `nO` | int | |