from typing import Union, Iterator, Tuple from ...symbols import NOUN, PROPN, PRON, VERB, AUX from ...errors import Errors from ...tokens import Doc, Span, Token def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]: """Detect base noun phrases from a dependency parse. Works on Doc and Span.""" doc = doclike.doc if not doc.has_annotation("DEP"): raise ValueError(Errors.E029) if not len(doc): return np_label = doc.vocab.strings.add("NP") left_labels = ["det", "fixed", "neg"] # ['nunmod', 'det', 'appos', 'fixed'] right_labels = ["flat", "fixed", "compound", "neg"] stop_labels = ["punct"] np_left_deps = [doc.vocab.strings.add(label) for label in left_labels] np_right_deps = [doc.vocab.strings.add(label) for label in right_labels] stop_deps = [doc.vocab.strings.add(label) for label in stop_labels] prev_right = -1 for token in doclike: if token.pos in [PROPN, NOUN, PRON]: left, right = noun_bounds( doc, token, np_left_deps, np_right_deps, stop_deps ) if left.i <= prev_right: continue yield left.i, right.i + 1, np_label prev_right = right.i def is_verb_token(token: Token) -> bool: return token.pos in [VERB, AUX] def noun_bounds(doc, root, np_left_deps, np_right_deps, stop_deps): left_bound = root for token in reversed(list(root.lefts)): if token.dep in np_left_deps: left_bound = token right_bound = root for token in root.rights: if token.dep in np_right_deps: left, right = noun_bounds( doc, token, np_left_deps, np_right_deps, stop_deps ) filter_func = lambda t: is_verb_token(t) or t.dep in stop_deps if list(filter(filter_func, doc[left_bound.i : right.i])): break else: right_bound = right return left_bound, right_bound SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}