import pytest from numpy.testing import assert_equal from spacy.attrs import ENT_IOB from spacy import util, registry from spacy.lang.en import English from spacy.language import Language from spacy.lookups import Lookups from spacy.pipeline._parser_internals.ner import BiluoPushDown from spacy.training import Example from spacy.tokens import Doc, Span from spacy.vocab import Vocab import logging from ..util import make_tempdir from ...pipeline import EntityRecognizer from ...pipeline.ner import DEFAULT_NER_MODEL TRAIN_DATA = [ ("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}), ("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}), ] @pytest.fixture def neg_key(): return "non_entities" @pytest.fixture def vocab(): return Vocab() @pytest.fixture def doc(vocab): return Doc(vocab, words=["Casey", "went", "to", "New", "York", "."]) @pytest.fixture def entity_annots(doc): casey = doc[0:1] ny = doc[3:5] return [ (casey.start_char, casey.end_char, "PERSON"), (ny.start_char, ny.end_char, "GPE"), ] @pytest.fixture def entity_types(entity_annots): return sorted(set([label for (s, e, label) in entity_annots])) @pytest.fixture def tsys(vocab, entity_types): actions = BiluoPushDown.get_actions(entity_types=entity_types) return BiluoPushDown(vocab.strings, actions) def test_get_oracle_moves(tsys, doc, entity_annots): example = Example.from_dict(doc, {"entities": entity_annots}) act_classes = tsys.get_oracle_sequence(example, _debug=False) names = [tsys.get_class_name(act) for act in act_classes] assert names == ["U-PERSON", "O", "O", "B-GPE", "L-GPE", "O"] def test_negative_samples_two_word_input(tsys, vocab, neg_key): """Test that we don't get stuck in a two word input when we have a negative span. This could happen if we don't have the right check on the B action. """ tsys.cfg["neg_key"] = neg_key doc = Doc(vocab, words=["A", "B"]) entity_annots = [None, None] example = Example.from_dict(doc, {"entities": entity_annots}) # These mean that the oracle sequence shouldn't have O for the first # word, and it shouldn't analyse it as B-PERSON, L-PERSON example.y.spans[neg_key] = [ Span(example.y, 0, 1, label="O"), Span(example.y, 0, 2, label="PERSON"), ] act_classes = tsys.get_oracle_sequence(example) names = [tsys.get_class_name(act) for act in act_classes] assert names assert names[0] != "O" assert names[0] != "B-PERSON" assert names[1] != "L-PERSON" def test_negative_samples_three_word_input(tsys, vocab, neg_key): """Test that we exclude a 2-word entity correctly using a negative example.""" tsys.cfg["neg_key"] = neg_key doc = Doc(vocab, words=["A", "B", "C"]) entity_annots = [None, None, None] example = Example.from_dict(doc, {"entities": entity_annots}) # These mean that the oracle sequence shouldn't have O for the first # word, and it shouldn't analyse it as B-PERSON, L-PERSON example.y.spans[neg_key] = [ Span(example.y, 0, 1, label="O"), Span(example.y, 0, 2, label="PERSON"), ] act_classes = tsys.get_oracle_sequence(example) names = [tsys.get_class_name(act) for act in act_classes] assert names assert names[0] != "O" assert names[1] != "B-PERSON" def test_negative_samples_U_entity(tsys, vocab, neg_key): """Test that we exclude a 2-word entity correctly using a negative example.""" tsys.cfg["neg_key"] = neg_key doc = Doc(vocab, words=["A"]) entity_annots = [None] example = Example.from_dict(doc, {"entities": entity_annots}) # These mean that the oracle sequence shouldn't have O for the first # word, and it shouldn't analyse it as B-PERSON, L-PERSON example.y.spans[neg_key] = [ Span(example.y, 0, 1, label="O"), Span(example.y, 0, 1, label="PERSON"), ] act_classes = tsys.get_oracle_sequence(example) names = [tsys.get_class_name(act) for act in act_classes] assert names assert names[0] != "O" assert names[0] != "U-PERSON" def test_negative_sample_key_is_in_config(vocab, entity_types): actions = BiluoPushDown.get_actions(entity_types=entity_types) tsys = BiluoPushDown(vocab.strings, actions, incorrect_spans_key="non_entities") assert tsys.cfg["neg_key"] == "non_entities" # We can't easily represent this on a Doc object. Not sure what the best solution # would be, but I don't think it's an important use case? @pytest.mark.skip(reason="No longer supported") def test_oracle_moves_missing_B(en_vocab): words = ["B", "52", "Bomber"] biluo_tags = [None, None, "L-PRODUCT"] doc = Doc(en_vocab, words=words) example = Example.from_dict(doc, {"words": words, "entities": biluo_tags}) moves = BiluoPushDown(en_vocab.strings) move_types = ("M", "B", "I", "L", "U", "O") for tag in biluo_tags: if tag is None: continue elif tag == "O": moves.add_action(move_types.index("O"), "") else: action, label = tag.split("-") moves.add_action(move_types.index("B"), label) moves.add_action(move_types.index("I"), label) moves.add_action(move_types.index("L"), label) moves.add_action(move_types.index("U"), label) moves.get_oracle_sequence(example) # We can't easily represent this on a Doc object. Not sure what the best solution # would be, but I don't think it's an important use case? @pytest.mark.skip(reason="No longer supported") def test_oracle_moves_whitespace(en_vocab): words = ["production", "\n", "of", "Northrop", "\n", "Corp.", "\n", "'s", "radar"] biluo_tags = ["O", "O", "O", "B-ORG", None, "I-ORG", "L-ORG", "O", "O"] doc = Doc(en_vocab, words=words) example = Example.from_dict(doc, {"entities": biluo_tags}) moves = BiluoPushDown(en_vocab.strings) move_types = ("M", "B", "I", "L", "U", "O") for tag in biluo_tags: if tag is None: continue elif tag == "O": moves.add_action(move_types.index("O"), "") else: action, label = tag.split("-") moves.add_action(move_types.index(action), label) moves.get_oracle_sequence(example) def test_accept_blocked_token(): """Test succesful blocking of tokens to be in an entity.""" # 1. test normal behaviour nlp1 = English() doc1 = nlp1("I live in New York") config = {} ner1 = nlp1.create_pipe("ner", config=config) assert [token.ent_iob_ for token in doc1] == ["", "", "", "", ""] assert [token.ent_type_ for token in doc1] == ["", "", "", "", ""] # Add the OUT action ner1.moves.add_action(5, "") ner1.add_label("GPE") # Get into the state just before "New" state1 = ner1.moves.init_batch([doc1])[0] ner1.moves.apply_transition(state1, "O") ner1.moves.apply_transition(state1, "O") ner1.moves.apply_transition(state1, "O") # Check that B-GPE is valid. assert ner1.moves.is_valid(state1, "B-GPE") # 2. test blocking behaviour nlp2 = English() doc2 = nlp2("I live in New York") config = {} ner2 = nlp2.create_pipe("ner", config=config) # set "New York" to a blocked entity doc2.set_ents([], blocked=[doc2[3:5]], default="unmodified") assert [token.ent_iob_ for token in doc2] == ["", "", "", "B", "B"] assert [token.ent_type_ for token in doc2] == ["", "", "", "", ""] # Check that B-GPE is now invalid. ner2.moves.add_action(4, "") ner2.moves.add_action(5, "") ner2.add_label("GPE") state2 = ner2.moves.init_batch([doc2])[0] ner2.moves.apply_transition(state2, "O") ner2.moves.apply_transition(state2, "O") ner2.moves.apply_transition(state2, "O") # we can only use U- for "New" assert not ner2.moves.is_valid(state2, "B-GPE") assert ner2.moves.is_valid(state2, "U-") ner2.moves.apply_transition(state2, "U-") # we can only use U- for "York" assert not ner2.moves.is_valid(state2, "B-GPE") assert ner2.moves.is_valid(state2, "U-") def test_train_empty(): """Test that training an empty text does not throw errors.""" train_data = [ ("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}), ("", {"entities": []}), ] nlp = English() train_examples = [] for t in train_data: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) ner = nlp.add_pipe("ner", last=True) ner.add_label("PERSON") nlp.initialize() for itn in range(2): losses = {} batches = util.minibatch(train_examples, size=8) for batch in batches: nlp.update(batch, losses=losses) def test_train_negative_deprecated(): """Test that the deprecated negative entity format raises a custom error.""" train_data = [ ("Who is Shaka Khan?", {"entities": [(7, 17, "!PERSON")]}), ] nlp = English() train_examples = [] for t in train_data: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) ner = nlp.add_pipe("ner", last=True) ner.add_label("PERSON") nlp.initialize() for itn in range(2): losses = {} batches = util.minibatch(train_examples, size=8) for batch in batches: with pytest.raises(ValueError): nlp.update(batch, losses=losses) def test_overwrite_token(): nlp = English() nlp.add_pipe("ner") nlp.initialize() # The untrained NER will predict O for each token doc = nlp("I live in New York") assert [token.ent_iob_ for token in doc] == ["O", "O", "O", "O", "O"] assert [token.ent_type_ for token in doc] == ["", "", "", "", ""] # Check that a new ner can overwrite O config = {} ner2 = nlp.create_pipe("ner", config=config) ner2.moves.add_action(5, "") ner2.add_label("GPE") state = ner2.moves.init_batch([doc])[0] assert ner2.moves.is_valid(state, "B-GPE") assert ner2.moves.is_valid(state, "U-GPE") ner2.moves.apply_transition(state, "B-GPE") assert ner2.moves.is_valid(state, "I-GPE") assert ner2.moves.is_valid(state, "L-GPE") def test_empty_ner(): nlp = English() ner = nlp.add_pipe("ner") ner.add_label("MY_LABEL") nlp.initialize() doc = nlp("John is watching the news about Croatia's elections") # if this goes wrong, the initialization of the parser's upper layer is probably broken result = ["O", "O", "O", "O", "O", "O", "O", "O", "O"] assert [token.ent_iob_ for token in doc] == result def test_ruler_before_ner(): """Test that an NER works after an entity_ruler: the second can add annotations""" nlp = English() # 1 : Entity Ruler - should set "this" to B and everything else to empty patterns = [{"label": "THING", "pattern": "This"}] ruler = nlp.add_pipe("entity_ruler") # 2: untrained NER - should set everything else to O untrained_ner = nlp.add_pipe("ner") untrained_ner.add_label("MY_LABEL") nlp.initialize() ruler.add_patterns(patterns) doc = nlp("This is Antti Korhonen speaking in Finland") expected_iobs = ["B", "O", "O", "O", "O", "O", "O"] expected_types = ["THING", "", "", "", "", "", ""] assert [token.ent_iob_ for token in doc] == expected_iobs assert [token.ent_type_ for token in doc] == expected_types def test_ner_constructor(en_vocab): config = { "update_with_oracle_cut_size": 100, } cfg = {"model": DEFAULT_NER_MODEL} model = registry.resolve(cfg, validate=True)["model"] EntityRecognizer(en_vocab, model, **config) EntityRecognizer(en_vocab, model) def test_ner_before_ruler(): """Test that an entity_ruler works after an NER: the second can overwrite O annotations""" nlp = English() # 1: untrained NER - should set everything to O untrained_ner = nlp.add_pipe("ner", name="uner") untrained_ner.add_label("MY_LABEL") nlp.initialize() # 2 : Entity Ruler - should set "this" to B and keep everything else O patterns = [{"label": "THING", "pattern": "This"}] ruler = nlp.add_pipe("entity_ruler") ruler.add_patterns(patterns) doc = nlp("This is Antti Korhonen speaking in Finland") expected_iobs = ["B", "O", "O", "O", "O", "O", "O"] expected_types = ["THING", "", "", "", "", "", ""] assert [token.ent_iob_ for token in doc] == expected_iobs assert [token.ent_type_ for token in doc] == expected_types def test_block_ner(): """Test functionality for blocking tokens so they can't be in a named entity""" # block "Antti L Korhonen" from being a named entity nlp = English() nlp.add_pipe("blocker", config={"start": 2, "end": 5}) untrained_ner = nlp.add_pipe("ner") untrained_ner.add_label("MY_LABEL") nlp.initialize() doc = nlp("This is Antti L Korhonen speaking in Finland") expected_iobs = ["O", "O", "B", "B", "B", "O", "O", "O"] expected_types = ["", "", "", "", "", "", "", ""] assert [token.ent_iob_ for token in doc] == expected_iobs assert [token.ent_type_ for token in doc] == expected_types @pytest.mark.parametrize("use_upper", [True, False]) def test_overfitting_IO(use_upper): # Simple test to try and quickly overfit the NER component nlp = English() ner = nlp.add_pipe("ner", config={"model": {"use_upper": use_upper}}) train_examples = [] for text, annotations in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) for ent in annotations.get("entities"): ner.add_label(ent[2]) optimizer = nlp.initialize() for i in range(50): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) assert losses["ner"] < 0.00001 # test the trained model test_text = "I like London." doc = nlp(test_text) ents = doc.ents assert len(ents) == 1 assert ents[0].text == "London" assert ents[0].label_ == "LOC" # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) doc2 = nlp2(test_text) ents2 = doc2.ents assert len(ents2) == 1 assert ents2[0].text == "London" assert ents2[0].label_ == "LOC" # Ensure that the predictions are still the same, even after adding a new label ner2 = nlp2.get_pipe("ner") assert ner2.model.attrs["has_upper"] == use_upper ner2.add_label("RANDOM_NEW_LABEL") doc3 = nlp2(test_text) ents3 = doc3.ents assert len(ents3) == 1 assert ents3[0].text == "London" assert ents3[0].label_ == "LOC" # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions texts = [ "Just a sentence.", "Then one more sentence about London.", "Here is another one.", "I like London.", ] batch_deps_1 = [doc.to_array([ENT_IOB]) for doc in nlp.pipe(texts)] batch_deps_2 = [doc.to_array([ENT_IOB]) for doc in nlp.pipe(texts)] no_batch_deps = [doc.to_array([ENT_IOB]) for doc in [nlp(text) for text in texts]] assert_equal(batch_deps_1, batch_deps_2) assert_equal(batch_deps_1, no_batch_deps) # test that kb_id is preserved test_text = "I like London and London." doc = nlp.make_doc(test_text) doc.ents = [Span(doc, 2, 3, label="LOC", kb_id=1234)] ents = doc.ents assert len(ents) == 1 assert ents[0].text == "London" assert ents[0].label_ == "LOC" assert ents[0].kb_id == 1234 doc = nlp.get_pipe("ner")(doc) ents = doc.ents assert len(ents) == 2 assert ents[0].text == "London" assert ents[0].label_ == "LOC" assert ents[0].kb_id == 1234 # ent added by ner has kb_id == 0 assert ents[1].text == "London" assert ents[1].label_ == "LOC" assert ents[1].kb_id == 0 def test_beam_ner_scores(): # Test that we can get confidence values out of the beam_ner pipe beam_width = 16 beam_density = 0.0001 nlp = English() config = { "beam_width": beam_width, "beam_density": beam_density, } ner = nlp.add_pipe("beam_ner", config=config) train_examples = [] for text, annotations in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) for ent in annotations.get("entities"): ner.add_label(ent[2]) optimizer = nlp.initialize() # update once losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) # test the scores from the beam test_text = "I like London." doc = nlp.make_doc(test_text) docs = [doc] beams = ner.predict(docs) entity_scores = ner.scored_ents(beams)[0] for j in range(len(doc)): for label in ner.labels: score = entity_scores[(j, j + 1, label)] eps = 0.00001 assert 0 - eps <= score <= 1 + eps def test_beam_overfitting_IO(neg_key): # Simple test to try and quickly overfit the Beam NER component nlp = English() beam_width = 16 beam_density = 0.0001 config = { "beam_width": beam_width, "beam_density": beam_density, "incorrect_spans_key": neg_key, } ner = nlp.add_pipe("beam_ner", config=config) train_examples = [] for text, annotations in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) for ent in annotations.get("entities"): ner.add_label(ent[2]) optimizer = nlp.initialize() # run overfitting for i in range(50): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) assert losses["beam_ner"] < 0.0001 # test the scores from the beam test_text = "I like London" docs = [nlp.make_doc(test_text)] beams = ner.predict(docs) entity_scores = ner.scored_ents(beams)[0] assert entity_scores[(2, 3, "LOC")] == 1.0 assert entity_scores[(2, 3, "PERSON")] == 0.0 assert len(nlp(test_text).ents) == 1 # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) docs2 = [nlp2.make_doc(test_text)] ner2 = nlp2.get_pipe("beam_ner") beams2 = ner2.predict(docs2) entity_scores2 = ner2.scored_ents(beams2)[0] assert entity_scores2[(2, 3, "LOC")] == 1.0 assert entity_scores2[(2, 3, "PERSON")] == 0.0 # Try to unlearn the entity by using negative annotations neg_doc = nlp.make_doc(test_text) neg_ex = Example(neg_doc, neg_doc) neg_ex.reference.spans[neg_key] = [Span(neg_doc, 2, 3, "LOC")] neg_train_examples = [neg_ex] for i in range(20): losses = {} nlp.update(neg_train_examples, sgd=optimizer, losses=losses) # test the "untrained" model assert len(nlp(test_text).ents) == 0 def test_neg_annotation(neg_key): """Check that the NER update works with a negative annotation that is a different label of the correct one, or partly overlapping, etc""" nlp = English() beam_width = 16 beam_density = 0.0001 config = { "beam_width": beam_width, "beam_density": beam_density, "incorrect_spans_key": neg_key, } ner = nlp.add_pipe("beam_ner", config=config) train_text = "Who is Shaka Khan?" neg_doc = nlp.make_doc(train_text) ner.add_label("PERSON") ner.add_label("ORG") example = Example.from_dict(neg_doc, {"entities": [(7, 17, "PERSON")]}) example.reference.spans[neg_key] = [ Span(neg_doc, 2, 4, "ORG"), Span(neg_doc, 2, 3, "PERSON"), Span(neg_doc, 1, 4, "PERSON"), ] optimizer = nlp.initialize() for i in range(2): losses = {} nlp.update([example], sgd=optimizer, losses=losses) def test_neg_annotation_conflict(neg_key): # Check that NER raises for a negative annotation that is THE SAME as a correct one nlp = English() beam_width = 16 beam_density = 0.0001 config = { "beam_width": beam_width, "beam_density": beam_density, "incorrect_spans_key": neg_key, } ner = nlp.add_pipe("beam_ner", config=config) train_text = "Who is Shaka Khan?" neg_doc = nlp.make_doc(train_text) ner.add_label("PERSON") ner.add_label("LOC") example = Example.from_dict(neg_doc, {"entities": [(7, 17, "PERSON")]}) example.reference.spans[neg_key] = [Span(neg_doc, 2, 4, "PERSON")] assert len(example.reference.ents) == 1 assert example.reference.ents[0].text == "Shaka Khan" assert example.reference.ents[0].label_ == "PERSON" assert len(example.reference.spans[neg_key]) == 1 assert example.reference.spans[neg_key][0].text == "Shaka Khan" assert example.reference.spans[neg_key][0].label_ == "PERSON" optimizer = nlp.initialize() for i in range(2): losses = {} with pytest.raises(ValueError): nlp.update([example], sgd=optimizer, losses=losses) def test_beam_valid_parse(neg_key): """Regression test for previously flakey behaviour""" nlp = English() beam_width = 16 beam_density = 0.0001 config = { "beam_width": beam_width, "beam_density": beam_density, "incorrect_spans_key": neg_key, } nlp.add_pipe("beam_ner", config=config) # fmt: off tokens = ['FEDERAL', 'NATIONAL', 'MORTGAGE', 'ASSOCIATION', '(', 'Fannie', 'Mae', '):', 'Posted', 'yields', 'on', '30', 'year', 'mortgage', 'commitments', 'for', 'delivery', 'within', '30', 'days', '(', 'priced', 'at', 'par', ')', '9.75', '%', ',', 'standard', 'conventional', 'fixed', '-', 'rate', 'mortgages', ';', '8.70', '%', ',', '6/2', 'rate', 'capped', 'one', '-', 'year', 'adjustable', 'rate', 'mortgages', '.', 'Source', ':', 'Telerate', 'Systems', 'Inc.'] iob = ['B-ORG', 'I-ORG', 'I-ORG', 'L-ORG', 'O', 'B-ORG', 'L-ORG', 'O', 'O', 'O', 'O', 'B-DATE', 'L-DATE', 'O', 'O', 'O', 'O', 'O', 'B-DATE', 'L-DATE', 'O', 'O', 'O', 'O', 'O', 'B-PERCENT', 'L-PERCENT', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-PERCENT', 'L-PERCENT', 'O', 'U-CARDINAL', 'O', 'O', 'B-DATE', 'I-DATE', 'L-DATE', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'] # fmt: on doc = Doc(nlp.vocab, words=tokens) example = Example.from_dict(doc, {"ner": iob}) neg_span = Span(doc, 50, 53, "ORG") example.reference.spans[neg_key] = [neg_span] optimizer = nlp.initialize() for i in range(5): losses = {} nlp.update([example], sgd=optimizer, losses=losses) assert "beam_ner" in losses def test_ner_warns_no_lookups(caplog): nlp = English() assert nlp.lang in util.LEXEME_NORM_LANGS nlp.vocab.lookups = Lookups() assert not len(nlp.vocab.lookups) nlp.add_pipe("ner") with caplog.at_level(logging.DEBUG): nlp.initialize() assert "W033" in caplog.text caplog.clear() nlp.vocab.lookups.add_table("lexeme_norm") nlp.vocab.lookups.get_table("lexeme_norm")["a"] = "A" with caplog.at_level(logging.DEBUG): nlp.initialize() assert "W033" not in caplog.text @Language.factory("blocker") class BlockerComponent1: def __init__(self, nlp, start, end, name="my_blocker"): self.start = start self.end = end self.name = name def __call__(self, doc): doc.set_ents([], blocked=[doc[self.start : self.end]], default="unmodified") return doc