# cython: profile=True # cython: embedsignature=True '''Tokenize English text, using a scheme that differs from the Penn Treebank 3 scheme in several important respects: * Whitespace is added as tokens, except for single spaces. e.g., >>> [w.string for w in EN.tokenize(u'\\nHello \\tThere')] [u'\\n', u'Hello', u' ', u'\\t', u'There'] * Contractions are normalized, e.g. >>> [w.string for w in EN.tokenize(u"isn't ain't won't he's")] [u'is', u'not', u'are', u'not', u'will', u'not', u'he', u"__s"] * Hyphenated words are split, with the hyphen preserved, e.g.: >>> [w.string for w in EN.tokenize(u'New York-based')] [u'New', u'York', u'-', u'based'] Other improvements: * Email addresses, URLs, European-formatted dates and other numeric entities not found in the PTB are tokenized correctly * Heuristic handling of word-final periods (PTB expects sentence boundary detection as a pre-process before tokenization.) Take care to ensure your training and run-time data is tokenized according to the same scheme. Tokenization problems are a major cause of poor performance for NLP tools. If you're using a pre-trained model, the :py:mod:`spacy.ptb3` module provides a fully Penn Treebank 3-compliant tokenizer. ''' # TODO #The script translate_treebank_tokenization can be used to transform a treebank's #annotation to use one of the spacy tokenization schemes. from __future__ import unicode_literals from libc.stdlib cimport malloc, calloc, free from libc.stdint cimport uint64_t cimport lang from spacy import util from spacy import orth TAG_THRESH = 0.5 UPPER_THRESH = 0.2 LOWER_THRESH = 0.5 TITLE_THRESH = 0.7 NR_FLAGS = 0 OFT_UPPER = NR_FLAGS; NR_FLAGS += 1 OFT_LOWER = NR_FLAGS; NR_FLAGS += 1 OFT_TITLE = NR_FLAGS; NR_FLAGS += 1 IS_ALPHA = NR_FLAGS; NR_FLAGS += 1 IS_DIGIT = NR_FLAGS; NR_FLAGS += 1 IS_PUNCT = NR_FLAGS; NR_FLAGS += 1 IS_SPACE = NR_FLAGS; NR_FLAGS += 1 IS_ASCII = NR_FLAGS; NR_FLAGS += 1 IS_TITLE = NR_FLAGS; NR_FLAGS += 1 IS_LOWER = NR_FLAGS; NR_FLAGS += 1 IS_UPPER = NR_FLAGS; NR_FLAGS += 1 CAN_PUNCT = NR_FLAGS; NR_FLAGS += 1 CAN_CONJ = NR_FLAGS; NR_FLAGS += 1 CAN_NUM = NR_FLAGS; NR_FLAGS += 1 CAN_DET = NR_FLAGS; NR_FLAGS += 1 CAN_ADP = NR_FLAGS; NR_FLAGS += 1 CAN_ADJ = NR_FLAGS; NR_FLAGS += 1 CAN_ADV = NR_FLAGS; NR_FLAGS += 1 CAN_VERB = NR_FLAGS; NR_FLAGS += 1 CAN_NOUN = NR_FLAGS; NR_FLAGS += 1 CAN_PDT = NR_FLAGS; NR_FLAGS += 1 CAN_POS = NR_FLAGS; NR_FLAGS += 1 CAN_PRON = NR_FLAGS; NR_FLAGS += 1 CAN_PRT = NR_FLAGS; NR_FLAGS += 1 NR_VIEWS = 0 CANON_CASED = NR_VIEWS; NR_VIEWS += 1 SHAPE = NR_VIEWS; NR_VIEWS += 1 NON_SPARSE = NR_VIEWS; NR_VIEWS += 1 cdef class English(Language): """English tokenizer, tightly coupled to lexicon. Attributes: name (unicode): The two letter code used by Wikipedia for the language. lexicon (Lexicon): The lexicon. Exposes the lookup method. """ def __cinit__(self, name, string_features, flag_features): flag_funcs = [None for _ in range(NR_FLAGS)] flag_funcs[OFT_UPPER] = orth.oft_case('upper', UPPER_THRESH) flag_funcs[OFT_LOWER] = orth.oft_case('lower', LOWER_THRESH) flag_funcs[OFT_TITLE] = orth.oft_case('title', TITLE_THRESH) flag_funcs[IS_ALPHA] = orth.is_alpha flag_funcs[IS_DIGIT] = orth.is_digit flag_funcs[IS_PUNCT] = orth.is_punct flag_funcs[IS_SPACE] = orth.is_space flag_funcs[IS_ASCII] = orth.is_ascii flag_funcs[IS_TITLE] = orth.is_title flag_funcs[IS_LOWER] = orth.is_lower flag_funcs[IS_UPPER] = orth.is_upper flag_funcs[CAN_PUNCT] = orth.can_tag('PUNCT', TAG_THRESH) flag_funcs[CAN_CONJ] = orth.can_tag('CONJ', TAG_THRESH) flag_funcs[CAN_NUM] = orth.can_tag('NUM', TAG_THRESH) flag_funcs[CAN_DET] = orth.can_tag('DET', TAG_THRESH) flag_funcs[CAN_ADP] = orth.can_tag('ADP', TAG_THRESH) flag_funcs[CAN_ADJ] = orth.can_tag('ADJ', TAG_THRESH) flag_funcs[CAN_ADV] = orth.can_tag('ADV', TAG_THRESH) flag_funcs[CAN_VERB] = orth.can_tag('VERB', TAG_THRESH) flag_funcs[CAN_NOUN] = orth.can_tag('NOUN', TAG_THRESH) flag_funcs[CAN_PDT] = orth.can_tag('PDT', TAG_THRESH) flag_funcs[CAN_POS] = orth.can_tag('POS', TAG_THRESH) flag_funcs[CAN_PRON] = orth.can_tag('PRON', TAG_THRESH) flag_funcs[CAN_PRT] = orth.can_tag('PRT', TAG_THRESH) string_funcs = [None for _ in range(NR_VIEWS)] string_funcs[CANON_CASED] = orth.canon_case string_funcs[SHAPE] = orth.word_shape string_funcs[NON_SPARSE] = orth.non_sparse self.name = name self.cache = {} lang_data = util.read_lang_data(name) rules, words, probs, clusters, case_stats, tag_stats = lang_data self.lexicon = lang.Lexicon(words, probs, clusters, case_stats, tag_stats, string_funcs, flag_funcs) self._load_special_tokenization(rules) cdef int _split_one(self, unicode word): cdef size_t length = len(word) cdef int i = 0 if word.startswith("'s") or word.startswith("'S"): return 2 # Contractions if word.endswith("'s") and length >= 3: return length - 2 # Leading punctuation if _check_punct(word, 0, length): return 1 elif length >= 1: # Split off all trailing punctuation characters i = 0 while i < length and not _check_punct(word, i, length): i += 1 return i cdef bint _check_punct(unicode word, size_t i, size_t length): # Don't count appostrophes as punct if the next char is a letter if word[i] == "'" and i < (length - 1) and word[i+1].isalpha(): return i == 0 if word[i] == "-" and i < (length - 1) and word[i+1] == '-': return False # Don't count commas as punct if the next char is a number if word[i] == "," and i < (length - 1) and word[i+1].isdigit(): return False # Don't count periods as punct if the next char is not whitespace if word[i] == "." and i < (length - 1) and not word[i+1].isspace(): return False return not word[i].isalnum() EN = English('en', [], [])